Transient transfection of a Ewing's Sarcoma cell line expressing type I EWS-FLI1 fusion and doxycycline-inducible short hairpin RNA against EWS-FLI1 (A673sh)
Suppression of FOXO1 is responsible for a growth regulatory repressive transcriptional sub-signature of EWS-FLI1 in Ewing sarcoma.
Cell line
View SamplesThe challenge of predicting which patients with breast cancer will develop metastases leads to the overtreatment of patients with benign disease and to the inadequate treatment of the aggressive cancers. Here, we report the development and testing of a microfluidic assay that quantifies the abundance and proliferation of migratory cells in breast-cancer specimens, for the assessment of their metastatic propensity and for the rapid screening of potential antimetastatic therapeutics. On the basis of the key roles of cell motility and proliferation in cancer metastasis, the device accurately predicts the metastatic potential of breast-cancer cell lines and of patient-derived xenografts. Compared to unsorted cancer cells, highly motile cells isolated by the device exhibited similar tumourigenic potential but markedly increased metastatic propensity in vivo. RNA sequencing of the highly motile cells revealed an enrichment of motility-related and survival-related genes. The approach might be developed into a companion assay for the prediction of metastasis in patients and for the selection of effective therapeutic regimens. Overall design: RNA was isolated from samples of 1000Â migratory or unsorted cells in triplicate
A microfluidic assay for the quantification of the metastatic propensity of breast cancer specimens.
Specimen part, Cell line, Subject
View SamplesActivation of the STING (Stimulator of Interferon Genes) pathway by microbial or self-DNA, as well as cyclic di nucleotides (CDN), results in the induction of numerous genes that suppress pathogen replication and facilitate adaptive immunity. However, sustained gene transcription is rigidly prevented to avoid lethal STING-dependent pro-inflammatory disease by mechanisms that remain unknown. We demonstrate here that after autophagy-dependent STING delivery of TBK1 (TANK-binding kinase 1) to endosomal/lysosomal compartments and activation of transcription factors IRF3 (interferon regulatory factors 3) and NF-B (nuclear factor kappa beta), that STING is subsequently phosphorylated by serine/threonine UNC-51-like kinase (ULK1/ATG1) and IRF3 function is suppressed. ULK1 activation occurred following disassociation from its repressor adenine monophosphate activated protein kinase (AMPK), and was elicited by CDNS generated by the cGAMP synthase, cGAS. Thus, while CDNs may initially facilitate STING function, they subsequently trigger negative-feedback control of STING activity, thus preventing the persistent transcription of innate immune genes.
Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling.
Age, Specimen part, Treatment
View SamplesWe performed a microarray experiment to assess SAHA-induced changes in expression of genes of the homologous recombination DNA repair pathway
Suberoylanilide hydroxamic acid (SAHA) enhances olaparib activity by targeting homologous recombination DNA repair in ovarian cancer.
Cell line, Treatment, Time
View SamplesExpression profiling of Ewing sarcoma samples in the frame of the CIT program from the french Ligue Nationale Contre le Cancer (http://cit.ligue-cancer.net).
Common variants near TARDBP and EGR2 are associated with susceptibility to Ewing sarcoma.
Sex, Age
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Inflammation-driven carcinogenesis is mediated through STING.
Specimen part
View SamplesChronic stimulation of innate immune pathways by microbial agents or damaged tissue is known to promote inflammation-driven tumorigenesis by unclarified mechanisms1-3. Here we demonstrate that mutagenic 7,12-dimethylbenz(a)anthracene (DMBA), etoposide or cisplatin induces nuclear DNA leakage into the cytosol to intrinsically activate STING (Stimulator of Interferon Genes) dependent cytokine production. Inflammatory cytokine levels were subsequently augmented in a STING-dependent extrinsic manner by infiltrating phagocytes purging dying cells. Consequently, STING-/- mice, or wild type mice adoptively transferred with STING-/- bone marrow, were almost completely resistant to DMBA-induced skin carcinogenesis compared to their wild type counterparts. Our data emphasizes, for the first time, a role for STING in the induction of cancer, sheds significant insight into the causes of inflammation-driven carcinogenesis, and may provide therapeutic strategies to help prevent malignant disease
Inflammation-driven carcinogenesis is mediated through STING.
Specimen part
View SamplesChronic stimulation of innate immune pathways by microbial agents or damaged tissue is known to promote inflammation-driven tumorigenesis by unclarified mechanisms1-3. Here we demonstrate that mutagenic 7,12-dimethylbenz(a)anthracene (DMBA), etoposide or cisplatin induces nuclear DNA leakage into the cytosol to intrinsically activate STING (Stimulator of Interferon Genes) dependent cytokine production. Inflammatory cytokine levels were subsequently augmented in a STING-dependent extrinsic manner by infiltrating phagocytes purging dying cells. Consequently, STING-/- mice, or wild type mice adoptively transferred with STING-/- bone marrow, were almost completely resistant to DMBA-induced skin carcinogenesis compared to their wild type counterparts. Our data emphasizes, for the first time, a role for STING in the induction of cancer, sheds significant insight into the causes of inflammation-driven carcinogenesis, and may provide therapeutic strategies to help prevent malignant disease
Inflammation-driven carcinogenesis is mediated through STING.
Specimen part
View SamplesWe performed a time-course microarray experiment to define the transcriptional response to carboplatin in vitro, and to correlate this with clinical outcome in epithelial ovarian cancer (EOC). RNA was isolated from carboplatin and control-treated 36M2 ovarian cancer cells at several time points, followed by oligonucleotide microarray hybridization. Carboplatin induced changes in gene expression were assessed at the single gene as well as at the pathway level. Clinical validation was performed in publicly available microarray datasets using disease free and overall survival endpoints.
Carboplatin-induced gene expression changes in vitro are prognostic of survival in epithelial ovarian cancer.
No sample metadata fields
View SamplesAlthough several studies have uncovered abnormal signaling pathways in RASopathy disorders, little is known about the alterations of the cardiac transcriptome induced by Noonan syndrome (NS) mutations. Hence, to gain insights into the transcriptional alterations induced by the NS-associated RAF1S257L/+ mutation in human iPSC-derived cardiomyocytes, we performed quantitative transcriptome profiling by RNA-sequencing. Since we have found that inhibition of ERK5 and MEK1/2 pathways could normalized hypertrophy and myofibrillar disarray in mutant cardiomyocytes, we also aimed at identifying gene transcriptional profiles that were specifically affected by either MEK5-ERK5 or MEK1/2-ERK1/2 activation in RAF1S257L/+ iCMs. Overall design: mRNA profiles of human RAF1 S257L/+ and isogenic corrected iPSC-derived cardiomyocytes were generated by RNA-sequencing, in triplicate, using Ion S5.
Inducible Pluripotent Stem Cell-Derived Cardiomyocytes Reveal Aberrant Extracellular Regulated Kinase 5 and Mitogen-Activated Protein Kinase Kinase 1/2 Signaling Concomitantly Promote Hypertrophic Cardiomyopathy in RAF1-Associated Noonan Syndrome.
Specimen part, Subject
View Samples