Background: Preterm birth is the leading cause of all infant mortality. In 2004, 12.5% of all births were preterm. In order to understand preterm labor, we must first understand normal labor. Since many of the myometrial changes that occur during pregnancy are similar in mice and humans and mouse gestation is short, we have studied the uterine genes that change in the mouse during pregnancy. Here, we used microarray analysis to identify uterine genes in the gravid mouse that are differentially regulated in the cyclooxygenase-1 knockout mouse model of delayed parturition.
Identification of 9 uterine genes that are regulated during mouse pregnancy and exhibit abnormal levels in the cyclooxygenase-1 knockout mouse.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Activity-dependent regulation of inhibitory synapse development by Npas4.
No sample metadata fields
View Sampleswe performed a DNA microarray experiment to identify activity-regulated genes that are misregulated in the absence of Npas4.
Activity-dependent regulation of inhibitory synapse development by Npas4.
No sample metadata fields
View Sampleswe used DNA microarray analysis to identify genes that are induced by neuronal activity in excitatory neurons at the time when inhibitory synapses are forming and maturing on them.
Activity-dependent regulation of inhibitory synapse development by Npas4.
No sample metadata fields
View SamplesGene expression profiles generated from human tumor cells laser-microdissected from surgical samples of seven choroid plexus papillomas (Grade I WHO) as eight samples of epithelial cells lasermicrodissected from normal choroid plexus obtained at autopsy.
TWIST-1 is overexpressed in neoplastic choroid plexus epithelial cells and promotes proliferation and invasion.
Sex, Age
View SamplesAbstract from paper - Potti A, et al
A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer.
No sample metadata fields
View SamplesKAP1 (TRIM28) is a transcriptional regulator in embryonic development that controls stem cell self-renewal, chromatin organization and the DNA damage response, acting as an essential co-repressor for KRAB family zinc finger proteins (KRAB-ZNF). To gain insight into the function of this large gene family, we developed an antibody that recognizes the conserved zinc fingers linker region (ZnFL) in multiple KRAB-ZNF. Here we report that the expression of many KRAB-ZNF along with active SUMOlyated KAP1 is elevated widely in human breast cancers. KAP1 silencing in breast cancer cells reduced proliferation and inhibited the growth and metastasis of tumor xenografts. Conversely, KAP1 overexpression stimulated cell proliferation and tumor growth. In cells where KAP1 was silenced, we identified multiple downregulated genes linked to tumor progression and metastasis, including EREG/epiregulin, PTGS2/COX2, MMP1, MMP2 and CD44, along with downregulation of multiple KRAB-ZNF proteins. KAP1-dependent stabilization of KRAB-ZNF required direct interactions with KAP1. Together, our results show that KAP1-mediated stimulation of multiple KRAB-ZNF contributes to the growth and metastasis of breast cancer.
KAP1 promotes proliferation and metastatic progression of breast cancer cells.
Cell line
View SamplesPurpose: Due to its high metastatic proclivity, pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly types of cancer. Therefore, it is imperative to better understand how the disease spreads as it progresses. Using a novel genetically engineered mouse model that allows us to isolate a subpopulation of cancer cells with superior metastatic capacity, we show that this aggressive phenotype correlates exclusively with a strong hypoxia signature. We subsequently identified the novel hypoxia-inducible gene Blimp1, which appears to play a critical role in regulating the hypoxic response upon its induction. Furthermore, genetic ablation of Blimp1 greatly reduces the level of metastasis in a PDAC mouse model. The nature of this Blimp1-regulated hypoxia signature is very unstable, since the seeded metastatic lesions mostly re-adopt similar transcriptomic profiles as the primary tumors. In conclusion, our results offer a potential mechanistic insight into how hypoxia drives metastasis in PDAC. Methods: Pure, paired GFP-negative/Tomato-positive and GFP-positive/Tomato-positive cancer cells or pure Tomato-positive cancer cells were sorted from primary PDAC samples from 6 KPC-colors mice or KPCT mice, respectively, with the following criteria: single cell based on FSC-A/H; CD45-negative; CD31-negative; Ter119-negative; F4/80-negative; DAPI-negative; and Tomato-positive. RNA were extracted from 10^4 to 5x10^4 freshly sorted cancer cells using AllPrep DNA/RNA Micro Kit (Qiagen). RNA quality was assessed with the RNA6000 PicoAssay kit by using the Bioanalyzer 2100 (Agilent). All ex vivo RNA samples used for RNA-seq analyses had an RIN > 8.0. Total RNA (15 ng/sample) was used for cDNA synthesis and amplification with the Ovation RNA-Seq system (NuGEN Technologies, Inc.). Subsequently, the amplified DNA samples were fragmented through sonication (Covaris model S1) and subjected to library preparation using the Illumina TruSeqTM DNA sample preparation kit (Low-Throughput protocol) according to manufacturer''s protocol. The quality of purified cDNA library products was confirmed by bioanalyzer and prepared for cluster generation on HiSeq paired-end flow cells using the CBot automated cluster generation system followed by sequencing on HiSeq 2000 machines. We obtained 101bp, paired-end reads from fragments of an average length of 250bp. Subsequently, RNA-Seq reads were aligned to the mouse genome (mm10) using the STAR aligner with standard input parameters (Dobin et al., 2013). The number of reads uniquely aligned to exons of individual genes were counted with HTSeq against the UCSC KnownGene (mm10) transcriptome (Anders et al., 2015). Results: Compared to the GFP-negative counterparts, GFP-positive pure PDAC cancer cells express higher levels of genes that are highly enriched with hypoxia signature. Additionally, compared to the GFP-negative counterparts, GFP-positive pure PDAC cancer cells express lower levels of cell cycle-related genes. In contrast, pure cancer cells isolated based on locations reveal few consistent differentially expressed genes between primary tumor and liver metastases; no consistent differentially expressed gene between primary tumor and lymph node metastases. Conclusions: Transcriptome profiles of both GFP-negative/positive PDAC cancer cells suggest that Hmga2/GFP-expressing cancer cells are highly enriched for signatures that correspond to cells residing within hypoxic enrivonment. Overall design: Freshly sorted GFP/Hmga2-positive and GFP/Hmga2-negative PDAC cancer cells derived from tumors of 6 KPCT;Hmga2-CK/+ (KPC-colors) mice were subjected to transcriptome profiling by paired-end RNA-Seq (total of 6 pairs of samples with overall 12 samples). Additionally, pure Tomato-positive PDAC cancer cells isolated from different anatomical locations were also subjected to transcriptome profiling by paired-end RNA-Seq (n = 23, not including technical replicates).
BLIMP1 Induces Transient Metastatic Heterogeneity in Pancreatic Cancer.
Specimen part, Subject
View SamplesGene expression profiling of FACS sorted GFP+ve cells from sexed gonads of transgenic pSF1-eGFP mice
Expression profiling of purified mouse gonadal somatic cells during the critical time window of sex determination reveals novel candidate genes for human sexual dysgenesis syndromes.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genomic profiling of CHEK2*1100delC-mutated breast carcinomas.
Specimen part
View Samples