Maternal smoking doubles the risk of delivering a low birth weight infant. The purpose of this study was to analyze differential gene expression in umbilical cord tissue as a function of maternal smoking, with an emphasis on growth-related genes. We recruited 15 pregnant smokers and 15 women who never smoked during pregnancy to participate RNA was isolated from umbilical cord tissue collected and snap frozen at the time of delivery. Microarray analysis was performed using the Affymetrix GeneChip Scanner 3000.Six hundred seventy-eight probes corresponding to 545 genes were differentially expressed (i.e., an intensity ratio that exceeded +/-1.3 and a corrected significance value p < 0.005) in tissue obtained from smokers versus nonsmokers. Genes important for fetal growth, angiogenesis, or development of connective tissue matrix were up-regulated among smokers. The most highly up-regulated gene was CSH1, a somatomammotropin gene. Two other somatomammotropin genes (CSH2 and CSH-L1) were also up-regulated. The most highly down-regulated gene was APOBEC3A; other down-regulated genes included those that may be important in immune and barrier protection. PCR validation of the three somatomammotropin genes showed a high correlation between qPCR and microarray expression. Consequently, maternal smoking may be associated with altered gene expression in the offspring.
Effects of prenatal tobacco exposure on gene expression profiling in umbilical cord tissue.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MLL2, Not MLL1, Plays a Major Role in Sustaining MLL-Rearranged Acute Myeloid Leukemia.
Specimen part, Treatment
View SamplesCohesinopathies are characterized by mutations in the cohesin complex. Mutations in NIPBL, a cohesin loader, result in Cornelia de Lange syndrome (CdLS). CdLS is a congenital genetic disorder distinguished by craniofacial dysmorphism, abnormal upper limb development, delayed growth, severe cognitive retardation, and multiple organ malformations.It has been suggested that CdLS is caused by defects in the cohesin network that alter gene expression and genome organization. However, the precise molecular etiology of CdLS is largely unclear. To gain insights, we sequenced mRNAs isolated from mouse embryonic fibroblasts of both WT and NIPBL-haploinsufficient mice and compared their transcriptomes. Overall design: Examination of gene expression of WT and NIPBL+/- mice by RNA-seq
NIPBL Controls RNA Biogenesis to Prevent Activation of the Stress Kinase PKR.
No sample metadata fields
View SamplesHypoxia inducible factor (HIF) is the major transcriptional regulator of cellular responses to hypoxia. The two principal HIF-a isoforms, HIF-1a and HIF-2a, are progressively stabilized in response to hypoxia and form heterodimers with HIF-1b to activate a broad range of transcriptional responses. Here we report on the pan-genomic distribution of isoform-specific HIF binding in response to hypoxia of varying severity and duration, and in response to genetic ablation of each HIF-a isoform. Our findings reveal that, despite an identical consensus recognition sequence in DNA, each HIF heterodimer loads progressively at a distinct repertoire of cell-type specific sites across the genome, with little evidence of redistribution under any of the conditions examined. Marked biases towards promoter proximal binding of HIF-1 and promoter distant binding of HIF-2 were observed under all conditions and were consistent in multiple cell type. The findings imply that each HIF isoform has an inherent property that determines its binding distribution across the genome, which might be exploited to therapeutically target the specific transcriptional output of each isoform independently. Overall design: RNA_seq analysis of hypoxic gene regulation in HKC8 and HepG2 cell lines and in RCC4 cell lines stably transfected with wtVHL
Hypoxia drives glucose transporter 3 expression through hypoxia-inducible transcription factor (HIF)-mediated induction of the long noncoding RNA NICI.
Specimen part, Cell line, Subject
View SamplesDiesel exhaust (DE) has been shown to enhance allergic sensitization in animals following high dose instillation or chronic inhalation exposure scenarios. The purpose of this study was to determine if short term exposures to diluted DE enhance allergic immune responses to antigen, and identify possible mechanisms using microarray technology. BALB/c mice were exposed to filtered air or diluted DE to yield particle concentrations of 500 or 2000 g/m3 4 hr/day on days 0-4. Mice were sensitized intranasally with ovalbumin (OVA) antigen or saline on days 0-2, and 18 and all were challenged with OVA on day 28. Mice were necropsied either 4 hrs after the last DE exposure on day 4, or 18, 48, and 96 hrs after challenge. Immunological endpoints included OVA-specific serum IgE, biochemical and cellular profiles of bronchoalveolar lavage (BAL), and cytokine production in the BAL. OVA-sensitized mice exposed to both concentrations of DE had increased eosinophils, neutrophils, lymphocytes, and IL-6 post-challenge compared to OVA control, while DE/saline exposure yielded increases in neutrophils at the high dose only. Microarray analysis demonstrated distinct gene expression profiles for the high dose DE/OVA and DE/saline groups. DE/OVA induced pathways involved in oxidative stress and metabolism while DE in the absence of allergen sensitization modulated cell cycle control, growth and differentiation, G-proteins, and cell adhesion pathways. This study shows for the first time early changes in gene expression induced by the combination of diesel exhaust inhalation and antigen sensitization, which resulted in stronger development of an allergic asthma phenotype.
Increased transcription of immune and metabolic pathways in naive and allergic mice exposed to diesel exhaust.
No sample metadata fields
View SamplesHuman ILCs are classically categorized into five subsets; cytotoxic CD127-CD94+ NK cells and non-cytotoxic CD127+CD94-, ILC1s, ILC2s, ILC3s and LTi cells. Here, we identify a novel subset within the CD127+ ILC population, characterized by the expression of the cytotoxic marker CD94. These CD94+ ILCs strongly resemble conventional ILC3s in terms of phenotype, transcriptome and cytokine production, but are highly cytotoxic. IL-15 was unable to induce differentiation of CD94+ ILCs towards mature NK cells. Instead, CD94+ ILCs retained RORγt, CD127 and CD200R expression and produced IL-22 in response to IL-15. Culturing non-cytotoxic CD127+ ILC1s or ILC3s with IL-12 induced upregulation of CD94 and cytotoxic activity, effects that were not observed with IL-15 stimulation. Thus, human helper ILCs can acquire a cytotoxic program without differentiating into NK cells.
Identification of human cytotoxic ILC3s.
Specimen part, Subject
View SamplesThe prognosis of advanced stage neuroblastoma patients remains poor and, despite intensive therapy, the 5-year survival rate remains less than 50%. We previously identified histone deacetylase (HDAC) 8 as an indicator of poor clinical outcome and a selective drug target for differentiation therapy in vitro and in vivo. Here we performed kinome-wide RNAi screening to identify genes that are synthetically lethal with HDAC8 inhibitors. These experiments identified the neuroblastoma predisposition gene ALK as a candidate gene. Accordingly, the combination of the ALK/MET inhibitor crizotinib and selective HDAC8 inhibitors (3-6M PCI-34051 or 10M 20a) efficiently killed neuroblastoma cell lines carrying wildtype ALK (SK-N-BE(2)-C, IMR5/75), amplified ALK (NB-1), and those carrying the activating ALK F1174L mutation (Kelly), and, in cells carrying the activating R1275Q mutation (LAN-5), combination treatment decreased viable cell count. The effective dose of crizotinib in neuroblastoma cell lines ranged from 0.05M (ALK-amplified) to 0.8M (wildtype ALK). The combinatorial inhibition of ALK and HDAC8 also decreased tumor growth in an in vivo zebrafish xenograft model. Bioinformatic analyses revealed that the mRNA expression level of HDAC8 was significantly correlated with that of ALK in two independent patient cohorts, the Academic Medical Center cohort (n=88) and the German Neuroblastoma Trial cohort (n=649), and co-expression of both target genes identified patients with very poor outcome. Mechanistically, HDAC8 and ALK converge at the level of receptor tyrosine kinase (RTK) signaling and their downstream survival pathways, such as ERK signaling. Combination treatment of HDAC8 inhibitor with crizotinib efficiently blocked the activation of growth receptor survival signaling and shifted the cell cycle arrest and differentiation phenotype toward effective cell death of neuroblastoma cell lines, including sensitization of resistant models, but not of normal cells. These findings reveal combined targeting of ALK and HDAC8 as a novel strategy for the treatment of neuroblastoma.
A kinome-wide RNAi screen identifies ALK as a target to sensitize neuroblastoma cells for HDAC8-inhibitor treatment.
Specimen part
View SamplesProteinases play a pivotal role in wound healing by degrading molecular barriers, regulating cell-matrix interactions and availability of bioactive molecules. Matrix metalloproteinase-13 (MMP-13, collagenase-3) is a wide spectrum proteinase. Its expression and function is linked to the growth and invasion of many epithelial cancers such as squamous cell carcinoma. Moreover, the physiologic expression of MMP-13 is associated e.g. to scarless healing of human fetal skin and adult gingival wounds. While MMP-13 is not found in the normally healing skin wounds in human adults, it is expressed in mouse skin during wound healing. Thus, mouse wound healing models can be utilized for studying the role of MMP-13 in the events of wound healing. As the processes such as the migration and proliferation of keratinocytes, angiogenesis, inflammation and activation of fibroblasts are components of wound repair as well as of cancer, many results received from wound healing studies are also adaptable to cancer research.
MMP-13 regulates growth of wound granulation tissue and modulates gene expression signatures involved in inflammation, proteolysis, and cell viability.
Time
View SamplesVitamin D is an important calcium-regulating hormone with diverse functions in numerous tissues including the brain. Increasing evidence suggests that vitamin D may play a role in maintaining cognitive function and that vitamin D deficiency may accelerate age-related cognitive decline. Using aging rodents, we attempted to model the range of human serum vitamin D levels, from deficient to sufficient, to test whether vitamin D could preserve or improve cognitive function with aging. For 5-6 months, middle-aged F344 rats were fed diets containing low, medium (typical amount) or high vitamin D3 (100, 1000 or 10,000 IU/kg diet, respectively) and then hippocampal-dependent learning and memory were tested in the Morris water maze. Rats on high vitamin D achieved the highest blood levels (in the sufficient range) and significantly outperformed low and medium groups on maze reversal, a particularly challenging task that detects more subtle changes in memory. In addition to calcium-related processes, hippocampal gene expression microarrays identified pathways pertaining to synaptic transmission, cell communication and G-protein function as being up-regulated with high vitamin D. Basal synaptic transmission also was enhanced corroborating observed effects on gene expression and learning and memory. Our studies demonstrate a causal relationship between vitamin D status and cognitive function and suggest that vitamin D-mediated changes in hippocampal gene expression may improve the likelihood of successful brain aging.
Vitamin D prevents cognitive decline and enhances hippocampal synaptic function in aging rats.
Sex, Specimen part
View SamplesAffymetrix genechip profiling analsysis (MOE430A and MOE430B) of murine neuroblastoma cells infected with either RML prion strain or mock brain homogenate
Transcriptional stability of cultured cells upon prion infection.
No sample metadata fields
View Samples