Analysis of primary PDAC cells established from Pdx-1CreAPCL/+p53L/L and Pdx-1Crep53L/L mice.
APC haploinsufficiency coupled with p53 loss sufficiently induces mucinous cystic neoplasms and invasive pancreatic carcinoma in mice.
Specimen part
View SamplesInduced pluripotent stem (iPS) cells can be obtained from fibroblasts by expression of Oct4, Sox2, Klf4, and c-Myc. To determine how these factors induce this change in cell identity, we carried out genomewide promoter analysis of their binding in iPS and partially reprogrammed cells. Most targets in iPS cells are shared with ES cells and the factors cooperate to activate the ES-like expression program. In partially reprogrammed cells, genes bound by c-Myc have achieved a more ES-like binding and expression pattern. In contrast, genes that are co-bound by Oct4, Sox2, and Klf4 in ES cells and that encode pluripotency regulators show severe lack of both binding and transcriptional activation. Among the factors, c-Myc has a pivotal effect on the initiation of the ES transcription program, including the repression of fibroblast-specific genes. Our analysis begins to unravel how the four factors function together and suggests a temporal and separable order of their effects during reprogramming.
Role of the murine reprogramming factors in the induction of pluripotency.
No sample metadata fields
View SamplesNaïve human embryonic stem cells (hESCs) can be derived from primed hESCs or directly from blastocysts, but their X-chromosome state has remained unresolved. We found that the inactive X-chromosome (Xi) of primed hESCs was reactivated in naïve culture conditions. Similar to cells of the blastocyst, resulting naive cells exhibited two active X-chromosomes with XIST expression and chromosome-wide transcriptional dampening, and initiated XIST-mediated X-inactivation upon differentiation. Both establishment and exit from the naïve state (differentiation) happened via an XIST-negative XaXa intermediate. Together, these findings identify a cell culture system for functionally exploring the two X-chromosome dosage compensation processes in early human development: X-dampening and X-inactivation. Furthermore, the naïve state reset Xi abnormalities of primed hESCs, providing cells better suited for downstream applications. However, naïve hESCs displayed differences to the embryo because XIST expression was predominantly mono-allelic instead of bi-allelic, and X-inactivation was non-random, indicating the need for further culture improvement. Overall design: Differentiated naïve human embryonic stem cells and naïve human embryonic stem cells at different passages (Exp1 for late passage, Exp2 for early passage) were subjected to single cell RNA sequencing by the Fluidigm C1 Single-Cell Auto Prep System.
Human Naive Pluripotent Stem Cells Model X Chromosome Dampening and X Inactivation.
Specimen part, Subject
View SamplesComparison of human iPSC lines, ESC and fibroblasts to determine their expression patterns. All early passage female lines profiled expressed XIST RNA which is an indicator of an inactive X chromosome. Genes on the X-chromosome were also analyzed for overall levels of gene expression compared to human fibroblasts.
Female human iPSCs retain an inactive X chromosome.
Specimen part
View SamplesWe compared whole genome expression profiles of GSCs with normal human cortex, human neural stem cells (hNSC) from fetal cortex, glioblastoma (GBM) primary, and recurrent tumors to find GSC-specific plasma membrane transcripts.
Myelin-forming cell-specific cadherin-19 is a marker for minimally infiltrative glioblastoma stem-like cells.
Cell line
View SamplesTo check the dMyc function, RNA profiling was achieved by the RNA-seq assay comparing mRNA levels of lst81, dm0, lst81dm0 and rictor?1 in the adult heads of male mutant animals with wild-type controls Overall design: Compare the mRNA profiles of 5-day old adult head materials of mutants (lst81, dmP0, lst81dmP0 and rictor1) to wild type W1118 by Illumina suquencing.
Target of Rapamycin Complex 2 regulates cell growth via Myc in Drosophila.
Sex, Specimen part, Subject
View SamplesTrans-splicing is a post-transcriptional event that joins exons from separate pre-mRNAs. Detection of trans-splicing is usually severely hampered by experimental artifacts and genetic rearrangements. Here, we develop a new computational pipeline, TSscan, which integrates different types of high-throughput long-/short-read transcriptome sequencing of different human embryonic stem cell (hESC) lines to effectively minimize false positives while detecting trans-splicing. Combining TSscan screening with multiple experimental validation steps revealed that most chimeric RNA products were platform-dependent experimental artifacts of RNA sequencing. We successfully identified and confirmed four trans-spliced RNAs, including the first reported trans-spliced large intergenic noncoding RNA ("tsRMST"). We showed that these trans-spliced RNAs were all highly expressed in human pluripotent stem cells and differentially expressed during hESC differentiation. Our results further indicated that tsRMST can contribute to pluripotency maintenance of hESCs by suppressing lineage-specific gene expression through the recruitment of NANOG and the PRC2 complex factor, SUZ12. Taken together, our findings provide important insights into the role of trans-splicing in pluripotency maintenance of hESCs and help to facilitate future studies into trans-splicing, opening up this important but understudied class of post-transcriptional events for comprehensive characterization
Integrative transcriptome sequencing identifies trans-splicing events with important roles in human embryonic stem cell pluripotency.
Specimen part
View SamplesFaDu cells were infected with lentivirus containing sh-luciferase plasmid to compared with cells infected with sh-G9a containing lentivirus.
Inhibition of G9a induces DUSP4-dependent autophagic cell death in head and neck squamous cell carcinoma.
Specimen part
View SamplesDuring reprogramming of mouse embryonic fibroblast, pluripotent genes are up-regulated. Once iPSCs are successfully reprogrammed, the global gene profiles of iPSCs are comparable to mouse ESC.
EpEX/EpCAM and Oct4 or Klf4 alone are sufficient to generate induced pluripotent stem cells through STAT3 and HIF2α.
Specimen part
View SamplesPluripotent stem cells are increasingly used for therapeutic models, including transplantation of neural progenitors derived from human embryonic stem cells (hESCs). Recently, long non-coding RNAs (lncRNAs), including Maternally Expressed Gene 3 (MEG3) that is derived from DLK1-DIO3 imprinted locus, were found to be expressed during neural developmental events. Their deregulations are associated with various neurological diseases. The DLK1-DIO3 imprinted locus encodes abundant non-coding RNAs (ncRNAs) that are regulated by differential methylation on the locus. The aim of our research is to study the correlation between the DLK1-DIO3 derived ncRNAs and the capacity of hESC neural lineage differentiation. We classified hESCs into MEG3-ON and MEG3-OFF based on the expression levels of MEG3 as well as its downstream miRNAs by qRT-PCR. Initial embryoid body (EB) formation was conducted to examine the three germ layer differentiation ability. cDNA microarray was used to analyze the gene expression profiles of hESCs. Directed neural lineage differentiation was performed, followed by analysis of neural lineage marker expression levels and neurite formation via qRT-PCR and immunocytochemistry methods to investigate the capacity of neural differentiation in MEG3-ON and MEG3-OFF hESCs
Loss of non-coding RNA expression from the DLK1-DIO3 imprinted locus correlates with reduced neural differentiation potential in human embryonic stem cell lines.
No sample metadata fields
View Samples