The generation of properly functioning gametes in vitro, a key goal in developmental/reproductive biology, requires multi-step reconstitutions of complex germ cell development. Based on the logic of primordial germ cell (PGC)-specification, we demonstrate here the generation of PGC-like cells (PGCLCs) in mice with robust capacity for spermatogenesis from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) through epiblast-like cells (EpiLCs), a cellular state highly similar to pre-gastrulating epiblasts, but distinct from epiblast stem cells (EpiSCs). The global transcription profiles, epigenetic reprogramming, and cellular dynamics during PGCLC induction from EpiLCs are a meticulous capture of those associated with PGC specification from the epiblasts. Furthermore, we identify Integrin-beta 3 and SSEA1 as markers that purify PGCLCs with spermatogenic capacity free from tumorigenic undifferentiated cells. With the reconstitution of PGC specification pathway from the naive inner cell mass state, our study defines a paradigm for the essential step of in vitro gametogenesis.
Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells.
Specimen part
View SamplesGenome-wide DNA demethylation, including the erasure of genome imprints, in primordial germ cells (PGCs), is critical as a first step for creating the totipotent epigenome in the germ line. Here, we provide evidence that contrary to the prevailing model involving active DNA demethylation, imprint erasure in mouse PGCs occurs in a manner consistent with replication-coupled passive DNA demethylation: PGCs erase imprints during their rapid proliferation with little de novo as well as maintenance DNA methylation potential and no major chromatin alterations. Our findings necessitate the re-evaluation of and provide novel insights into the mechanism of genome-wide DNA demethylation in PGCs.
Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice.
Sex, Specimen part
View SamplesSpecification of germ cell fate is fundamental in development. With a highly representative single-cell microarray and rigorous quantitative-PCR analysis, we defined the genome-wide transcription dynamics that create primordial germ cells (PGCs) from the epiblast, a process that exclusively segregates them from their somatic neighbors. We also analyzed the effect of the loss of Blimp1, a key transcriptional regulator, on these dynamics. Our analysis revealed that PGC specification involves complex, yet highly ordered regulation of a large number of genes, proceeding under the strong influence of mesoderm induction with active repression of specific programs such as epithelial-mesenchymal transition, Hox gene activation, cell-cycle progression and DNA methyltransferase machinery. Remarkably, Blimp1 is essential for repressing nearly all the genes normally down-regulated in PGCs relative to their somatic neighbors, whereas it is dispensable for the activation of approximately half of the genes up-regulated in PGCs.
Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Induction of mouse germ-cell fate by transcription factors in vitro.
Sex, Specimen part
View SamplesThe germ cell lineage ensures the continuity of life through the generation of male and female gametes, which unite to form a totipotent zygote. We have established a culture system that recapitulates the mouse germ-cell specification pathway: Using cytokines, embryonic stem cells (ESCs)/induced pluripotent stem cells (iPSCs) are induced into epiblast-like cells (EpiLCs) and then into primordial germ cell-like cells (PGCLCs) with capacity both for spermatogenesis and oogenesis, creating an opportunity for understanding and regulating mammalian germ cell development in both sexes in vitro. Here we show that, without cytokines, simultaneous over-expression of three transcription factors (TFs), Blimp1 (also known as Prdm1), Prdm14 and Tfap2c (also known as AP2), directs EpiLCs, but not ESCs, swiftly and highly efficiently into a PGC state with endogenous transcription circuitry. The induction of the PGC state on EpiLCs minimally requires Prdm14 but not Blimp1 or Tfap2c. The TF-induced PGC state reconstitutes key transcriptome and epigenetic reprogramming in PGCs, but bypasses a mesodermal program that accompanies PGC specification in vivo and in vitro by cytokines including BMP4. Importantly, the TF-induced PGC-like cells robustly contribute to spermatogenesis and fertile offspring. Our findings provide not only a novel insight into the transcriptional logic that creates a germ cell state, but also a foundation for the TF-based reconstitution and regulation of mammalian gametogenesis.
Induction of mouse germ-cell fate by transcription factors in vitro.
Sex, Specimen part
View SamplesThe germ cell lineage ensures the continuity of life through the generation of male and female gametes, which unite to form a totipotent zygote. We have established a culture system that recapitulates the mouse germ-cell specification pathway: Using cytokines, embryonic stem cells (ESCs)/induced pluripotent stem cells (iPSCs) are induced into epiblast-like cells (EpiLCs) and then into primordial germ cell-like cells (PGCLCs) with capacity both for spermatogenesis and oogenesis, creating an opportunity for understanding and regulating mammalian germ cell development in both sexes in vitro. Here we show that, without cytokines, simultaneous over-expression of three transcription factors (TFs), Blimp1 (also known as Prdm1), Prdm14 and Tfap2c (also known as AP2), directs EpiLCs, but not ESCs, swiftly and highly efficiently into a PGC state with endogenous transcription circuitry. The induction of the PGC state on EpiLCs minimally requires Prdm14 but not Blimp1 or Tfap2c. The TF-induced PGC state reconstitutes key transcriptome and epigenetic reprogramming in PGCs, but bypasses a mesodermal program that accompanies PGC specification in vivo and in vitro by cytokines including BMP4. Importantly, the TF-induced PGC-like cells robustly contribute to spermatogenesis and fertile offspring. Our findings provide not only a novel insight into the transcriptional logic that creates a germ cell state, but also a foundation for the TF-based reconstitution and regulation of mammalian gametogenesis.
Induction of mouse germ-cell fate by transcription factors in vitro.
Sex
View SamplesReconstitution of female germ-cell development in vitro is a key challenge in reproductive biology and medicine. We show here that female (XX) embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in mice are induced into primordial germ cell-like cells (PGCLCs), which, when aggregated with female gonadal somatic cells as reconstituted ovaries, develop pre-meiotic germ cell characteristics, including X-reactivation, imprint erasure, and cyst formation. Upon transplantation under ovarian bursa, PGCLCs in the reconstituted ovaries mature into germinal vesicle-stage oocytes, which, through in vitro maturation and fertilization, contribute to fertile offspring. Our culture system serves as a robust foundation for the investigation of key properties of female germ cells, including the acquisition of totipotency, and for the reconstitution of whole female germ-cell development in vitro.
Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice.
Sex, Specimen part
View SamplesCellular diversity of the brain is largely attributed to the spatial and temporal heterogeneity of progenitor cells. In mammalian cerebral development, it has been difficult to determine how neural progenitor cells are heterogeneous, due to their dynamic changes in nuclear position and gene expression. To address this issue, we systematically analyzed the cDNA profiles of a large number of single progenitor cells at the mid-embryonic stage.
Single-cell gene profiling defines differential progenitor subclasses in mammalian neurogenesis.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis.
No sample metadata fields
View SamplesThe inner cell mass (ICM) of the early blastocyst at E3.5, a source of ES cell derivation, is a morphologically homogeneous population of undifferentiated pluripotent cells that give rise to all embryonic lineages. The immediate application of the newly developed V1V3 method to single cells in this stage of mouse embryos revealed the presence of two populations of cells, one with primitive endoderm expression and the other with pluripotent epiblast-like gene expression. The genes expressed differentially between these two populations were well preserved in morphologically differentiated primitive endoderm and epiblast in the embryos one day later (E4.5), demonstrating that the method successfully detects subtle but essential differences in gene expression at the single-cell level among seemingly homogeneous cell populations. This study provides a strategy to analyze biophysical events in medicine as well as in neural, stem cell, and developmental biology, where small numbers of distinctive or diseased cells play critical roles.
An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis.
No sample metadata fields
View Samples