DNA microarray analysis was employed to investigate the transcriptome response to nitric oxide in Pseudomonas aeruginosa. We focused on the role played by the nitric oxide-response regulators DNR and FhpR and an oxygen-response regulator ANR in the response.
Fine-tuned regulation of the dissimilatory nitrite reductase gene by oxygen and nitric oxide in Pseudomonas aeruginosa.
No sample metadata fields
View SamplesHuntingtons disease (HD) is a dominantly inherited genetic disease caused by mutant huntingtin (htt) protein with expanded polyglutamine tracts. A neuropathological hallmark of HD is the presence of neuronal inclusions of mutant htt. p62 is an important regulatory protein in selective autophagy, a process by which aggregated proteins are degraded, and it is associated with several neurodegenerative disorders including HD. Here we investigated the effect of p62 depletion in three HD model mice: R6/2, HD190QG and HD120QG mice. We found that loss of p62 in these models led to longer lifespans and reduced nuclear inclusions, although cytoplasmic inclusions increased with polyglutamine length. In mouse embryonic fibroblasts (MEFs) with or without p62, mutant htt with a nuclear localization signal (NLS) showed no difference in nuclear inclusion between the two MEF types. In the case of mutant htt without NLS, however, p62 depletion increased cytoplasmic inclusions. Furthermore, to examine the effect of impaired autophagy in HD model mice, we crossed R6/2 mice with Atg5 conditional knockout mice. These mice also showed decreased nuclear inclusions and increased cytoplasmic inclusions, similar to HD mice lacking p62. These data suggest that the genetic ablation of p62 in HD model mice enhances cytoplasmic inclusion formation by interrupting autophagic clearance of polyQ inclusions. This reduces polyQ nuclear influx and paradoxically ameliorates disease phenotypes by decreasing toxic nuclear inclusions.
Depletion of p62 reduces nuclear inclusions and paradoxically ameliorates disease phenotypes in Huntington's model mice.
No sample metadata fields
View SamplesTo assess the role of two redox-sensitive transcriptional regulators, RoxSR and ANR, in Pseudomonas aeruginosa under aerobic conditions, microarray analysis was performed. Transcriptome profiles of roxSR mutant and anr mutant aerobically grown in LB medium were determined by Affymetrix GeneChip at both the exponential phase and early stationary phase and compared to that of the wild type strain.
Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa.
No sample metadata fields
View SamplesInnate immune cells control acute eosinophilic lung inflammation induced by cystein proteases. Here we characterize the dynamic change of gene expression profile in basophils, natural helper cells and eosinophils during lung inflammation via cystein protease Overall design: Examination of mRNA levels in individual cell populations, basophils, natural helper cells and eosinophils of the lung from naïve mice and papain treated mice.
Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2s, in lung inflammation.
No sample metadata fields
View SamplesTo clarify mineralcorticoid receptor and glucocorticoid receptor-dependent gene networks in decidualizing human endometrial stromal cells.
Induction of 11β-HSD 1 and activation of distinct mineralocorticoid receptor- and glucocorticoid receptor-dependent gene networks in decidualizing human endometrial stromal cells.
Sex, Age, Specimen part, Treatment
View SamplesQuantitative phosphoproteome and transcriptome analysis of ligand-stimulated MCF-7 human breast cancer cells was performed to understand the mechanisms of tamoxifen resistance at a systems level. Phosphoproteome data revealed that wild type (WT) cells were more enriched with phospho-proteins than tamoxifen-resistant (TamR) cells after stimulation with ligands. Surprisingly, decreased phosphorylation after ligand perturbation was more common than increased phosphorylation. In particular, 17beta-estradiol (E2) induced down-regulation in WT cells at a very high rate. E2 and the ErbB ligand, heregulin (HRG) induced almost equal numbers of up-regulated phospho-proteins in WT cells. Pathway and motif activity analyses using transcriptome data additionally suggested that deregulated activation of GSK3B(glycogen synthase kinase 3 beta) and MAPK1/3 signaling might be associated with altered activation of CREB and AP-1 transcription factors in TamR cells and this hypothesis was validated by reporter assays. An examination of clinical samples revealed that, inhibitory phosphorylation of GSK3B at serine 9 was significantly lower in tamoxifen-treated breast cancer patients that eventually had relapses, implying that activation of GSK3B may be associated with the tamoxifen resistant phenotype. Thus, the combined phosphoproteome and transcriptome dataset analyses revealed distinct signal-transcription programs in tumor cells and provided a novel molecular target to understand tamoxifen resistance.
Integrated quantitative analysis of the phosphoproteome and transcriptome in tamoxifen-resistant breast cancer.
Sex, Age, Specimen part, Disease, Cell line, Treatment, Race, Time
View SamplesTriple-negative breast cancer (TNBC) is defined by the absence of estrogen and progesterone receptors and human epidermal growth factor receptor 2, and is the most lethal and aggressive subtype of breast cancer. However, the genes which relate to promote tumor aggressiveness in TNBC remain unclear.
Molecular hierarchy of heparin-binding EGF-like growth factor-regulated angiogenesis in triple-negative breast cancer.
Sex, Specimen part, Disease, Disease stage, Cell line
View SamplesGerminal center (GC) B cells cycle between two states, the light zone (LZ) and the dark zone (DZ), and in the latter they proliferate and hypermutate their immunoglobulin genes. How this functional transition takes place is still controversial. In this study, we demonstrate that ablation of Foxo1 after GC development led to the loss of the DZ GC B cells and disruption of the GC architecture. Mechanistically, even upon provision of adequate T cell help, Foxo1-deficient GC B cells showed less proliferative expansion than controls. Moreover, we found that the transcription factor BATF was transiently induced in LZ GC B cells in a Foxo1-dependent manner and that deletion of BATF similarly led to GC disruption. Thus, our results are consistent with a model where the switch from the LZ to the DZ is triggered after receipt of T cell help, and suggest that Foxo1-mediated BATF up-regulation is at least partly involved in this switch. Overall design: mRNA profiles of wild-type DZ, LZ, and Foxo1-deficient GC B cells were generated by deep sequencing in triplicate, using Illumina HiSeq 1500.
The transcription factor Foxo1 controls germinal center B cell proliferation in response to T cell help.
Specimen part, Subject
View SamplesDecoy receptor 3 (DcR3), a member of the tumor necrosis factor receptor (TNFR) superfamily, competitively binds and inhibits members of the TNF family, including Fas ligand (FasL), LIGHT, and TL1A. DcR3 was recently reported not only to act as a decoy receptor for these TNFRs but also to play a role as a ligand for the pathogenesis of RA.
Decoy receptor 3 regulates the expression of various genes in rheumatoid arthritis synovial fibroblasts.
Specimen part, Race
View SamplesCommon myeloid progenitor cells from murine bone marrow were sorted according to ROS content using FACS with H2-DCFDA staining.
Intracellular reactive oxygen species mark and influence the megakaryocyte-erythrocyte progenitor fate of common myeloid progenitors.
Specimen part
View Samples