E2F/RB activity is altered in most human tumors. The retinoblastoma family of proteins plays a key role in regulating the progression of the cell cycle from the G1 to S phases. This is achieved through negative regulation of E2F transcription factors, important positive regulators of cell cycle entry. E2F family members are divided in two groups: activators (E2F1-E2F3a) and repressors (E2F3b-E2F8). E2F4 accounts for a large part of the E2F activity and is a main E2F repressor member in vivo. Perturbations in the balance from quiescence towards proliferation contribute to increased mitotic gene expression levels frequently observed in cancer. We have previously reported that combined Rb1-Rbl1 and Rb1-E2F1 ablation in epidermis produces important alterations in epidermal proliferation and differentiation, leading to tumor development. However, the possible roles of E2F4 in this context are still to be determined. Here we show the absence of any discernible phenotype in the skin of mice lacking of E2F4. In contrast, the inducible loss of Rb1 in the epidermis of E2F4-null mice produced multiple skin abnormalities including altered differentiation and proliferation, spontaneous wounds, carcinoma in situ development and stem cell perturbations. All these phenotypic alterations are associated with extensive gene expression changes, the induction of c-myc and the Akt activation. Moreover, the whole transcriptome analyses in comparison with previous models generated also revealed extensive changes in multiple repressive complexes and in transcription factor activity. These results point to E2F4 as a master regulator in multiple steps of epidermal homeostasis in Rb1 absence.
Deregulation of the pRb-E2F4 axis alters epidermal homeostasis and favors tumor development.
Specimen part
View SamplesEndocrine therapies targeting the proliferative effect of 17-estradiol (17E2) through estrogen receptor (ER) are the most effective systemic treatment of ER-positive breast cancer. However, most breast tumors initially responsive to these therapies develop resistance through a molecular mechanism that is not yet fully understood. The long-term estrogen-deprived (LTED) MCF7 cell model has been proposed to recapitulate acquired resistance to aromatase inhibitors (AIs) in postmenopausal women. To elucidate this resistance, genomic, transcriptomic and molecular data were integrated into the time course of MCF7-LTED adaptation. Dynamic and widespread genomic changes were observed, including amplification of the ESR1 locus consequently linked to an increase in ER. Dynamic transcriptomic profiles were also observed that correlated significantly with genomic changes and were influenced by transcription factors known to be involved in acquired resistance or cell proliferation (e.g. IRF1 and E2F1, respectively) but, notably, not by canonical ER transcriptional function. Consistently, at the molecular level, activation of growth factor signaling pathways by EGFR/ERBB/AKT and a switch from phospho-Ser118 (pS118)- to pS167-ER were observed during MCF7-LTED adaptation. Evaluation of relevant clinical settings identified significant associations between MCF7-LTED and breast tumor transcriptome profiles that characterize ER-negative status, early response to letrozole and recurrence after tamoxifen treatment. This study proposes a mechanism for acquired resistance to estrogen deprivation that is coordinated across biological levels and independent of canonical ER function.
Biological reprogramming in acquired resistance to endocrine therapy of breast cancer.
Specimen part, Cell line
View SamplesBackground: Malignant peripheral nerve sheath tumors (MPNST) are soft-tissue sarcomas that can arise either sporadically or in association with neurofibromatosis type 1 (NF1). These aggressive malignancies confer poor survival, with no effective therapy available.
Comprehensive establishment and characterization of orthoxenograft mouse models of malignant peripheral nerve sheath tumors for personalized medicine.
Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Stem cell-like transcriptional reprogramming mediates metastatic resistance to mTOR inhibition.
Specimen part, Cell line
View SamplesInhibitors of the mechanistic target of rapamycin (mTOR) are currently used to treat advanced metastatic breast cancer. However, whether an aggressive phenotype is sustained through adaptation or resistance to mTOR inhibition remains unknown. Here, complementary studies in human tumors, cancer models and cell lines reveal transcriptional reprogramming that supports metastasis in response to mTOR inhibition. This cancer feature is driven by EVI1 and SOX9. EVI1 functionally cooperates with and positively regulates SOX9, and promotes the transcriptional upregulation of key mTOR pathway components (REHB and RAPTOR) and of lung metastasis mediators (FSCN1 and SPARC). The expression of EVI1 and SOX9 is associated with stem cell-like and metastasis signatures, and their depletion impairs the metastatic potential of breast cancer cells. These results establish the mechanistic link between resistance to mTOR inhibition and cancer metastatic potential, thus enhancing our understanding of mTOR targeting failure.
Stem cell-like transcriptional reprogramming mediates metastatic resistance to mTOR inhibition.
Specimen part
View Samples