In support of the investigation into the response of tissue resident phagocytes to sterile tissue damage in the peritoneal wall, different phagocyte populations were isolated from this tissue and RNA expression was measured using RNAseq. Overall design: Peritoneal wall phagocytes from three Cx3cr1gfp/+Ccr2rfp/+ animals were sorted into Cx3cr1-Ccr2rfp-, Cx3cr1-Ccr2rfp+, and Cx3cr1+Ccr2rfp- groups. Cells from three mice were sorted, and carried through the RNAseq protocol as three replicates per group.
Resident Macrophages Cloak Tissue Microlesions to Prevent Neutrophil-Driven Inflammatory Damage.
Specimen part, Subject
View SamplesPlasma cell differentiation involves coordinated changes in gene expression and functional properties of B cells. Here, we study the role of Mzb1, a Grp94 co-chaperone that is expressed in marginal zone (MZ) B cells and during the terminal differentiation of B cells to antibody-secreting cells (ASCs). By analyzing Mzb1 -/- Prdm1 +/gfp mice, we find that Mzb1 is specifically required for the differentiation and function of ASCs in a T cell-independent immune response. We find that Mzb1-deficiency mimics, in part, the phenotype of Blimp1 deficiency, including the impaired secretion of IgM and the deregulation of Blimp1 target genes. In addition, we find that Mzb1 -/- plasmablasts show a reduced activation of b1 integrin, which contributes to the impaired plasmablast differentiation and migration of ASCs to the bone marrow. Thus, Mzb1 function is required for multiple aspects of plasma cell differentiation. Overall design: Splenic B cells were purified from Mzb1 +/+ Prdm1 +/gfp and Mzb1 -/- Prdm1 +/gfp mice using anti-B220 magnetic beads and cultured in the presence of 25ug/ml LPS. After 4 days, undifferentiated CD138 - Blimp - B cell blasts (Activated B Cells), CD138 - Blimp + (Pre-PB cells), and CD138 + Blimp + (PB cells) were isolated with FACSAria (Becton Dickinson) sort.
Cochaperone Mzb1 is a key effector of Blimp1 in plasma cell differentiation and β1-integrin function.
Specimen part, Cell line, Subject
View SamplesHost-environment interfaces such as the dermis comprise tissue macrophages as the most abundant resident immune cell type. Diverse tasks, i.e. to resist against invading pathogens, to attract bypassing immune cells from penetrating vessels and to aid tissue development and repair require a dynamic postnatal coordination of tissue macrophages specification. Here, we delineated the postnatal development of dermal macrophages and their differentiation into distinct subsets by adapting single cell transcriptomics, fate-mapping and tissue imaging. We thereby identified a small phenotypically and transcriptionally distinct subset of embryo-derived skin macrophages that was maintained and largely excluded from the overall postnatal exchange by monocytes. These macrophages specifically interacted with dermal sensory nerves, surveilled and trimmed the myelin sheets and regulated axon sprouting after mechanical injury. In summary, our data show long-lasting functional specification of macrophages in the dermis that is driven by step-wise adaptation to guiding structures and ensures codevelopment of ontogenetically distinct cells within the same compartment. Overall design: Single Cell Sequencing was performed on CD45+CD11b+CD64+Lin-(lineage B220, CD3, NK1.1, Siglec-F, Ly6G) CX3CR1 (low, mid, high) macrophage subsets from mouse dermis after enzymatic digestion
A Subset of Skin Macrophages Contributes to the Surveillance and Regeneration of Local Nerves.
Age, Specimen part, Cell line, Subject
View SamplesThis study sought correlates of relapse tendency in TTP by examining gene expression profiles in peripheral blood leukocytes from patients with acquired ADAMTS13-deficient TTP in remission and matched healthy controls for global gene expression and autoantibodies.
Ribosomal and immune transcripts associate with relapse in acquired ADAMTS13-deficient thrombotic thrombocytopenic purpura.
Specimen part, Disease, Disease stage
View SamplesPlants can be primed by a stress cue to mount a faster and stronger activation of defense mechanisms upon a subsequent stress. A crucial component of such stress priming is the modified reactivation of genes upon recurring stress, a phenomenon known as transcriptional memory. The transcriptional memory in response to heat stress is not clear at the genome scale.
Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress.
Age, Specimen part
View Samples