The intestine is composed of an epithelial layer, containing rapidly proliferating cells that mature into two distinct anatomic regions, the small and the large intestine. Although previous studies have identified stem cells as the cell-of-origin for the whole intestine, no studies have compared stem cells derived from the small and large intestine. Here, we report intrinsic differences between these two populations of cells. Primary epithelial cells isolated from human fetal small and large intestine and expanded with Wnt agonist, R-spondin 2, displayed differential expression of stem cell markers and separate hierarchical clustering of gene expression involved in differentiation, proliferation and disease pathways. Using a three-dimensional in vitro differentiation assay, single cells derived from small and large intestine formed distinct organoid architecture with cellular hierarchy similar to that found in primary tissue. Our characterization of human fetal intestinal stem cells defies the classical definition proposed by most where small and large intestine are repopulated by an identical epithelial stem cell and raises the question of the importance of intrinsic and extrinsic cues in the development of intestinal diseases.
Distinct human stem cell populations in small and large intestine.
Specimen part
View SamplesDominant gain-of-function alleles of Arabidopsis phytochrome B were recently shown to confer light-independent, constitutive photomorphogenic (cop) phenotypes to transgenic plants (Su & Lagarias 2007 Plant Cell 19, 2124-2139). In the present study, comparative transcript profiling experiments were performed to assess whether the pattern of gene expression regulated by these alleles accurately reflects the process of photomorphogenesis in wild-type Arabidopsis. Whole genome transcriptional profiles of dark-grown phyAphyB seedlings expressing the Y276H mutant of phyB (YHB) revealed that YHB reprograms about 13% of the Arabidopsis transcriptome in a light-independent manner. The YHB-regulated transcriptome proved qualitatively similar to, but quantitatively greater than those of wild-type seedlings grown under 15 or 50 umol m-2 m-1 continuous red light (Rc). Among the 2977 genes statistically significant two-fold (SSTF) regulated by YHB in the absence of light include those encoding components of the photosynthetic apparatus, tetrapyrrole/pigment biosynthetic pathways and early light-responsive signaling factors. Approximately 80% of genes SSTF regulated by Rc were also YHB-modulated. Expression of a notable subset of 346 YHB-regulated genes proved to be strongly attenuated by Rc, indicating compensating regulation by phyC-E and/or other Rc-dependent processes. Since the majority of these 346 genes are regulated by the circadian clock, these results suggest that phyA- and phyB-independent light signaling pathway(s) strongly influence clock output. Together with the unique plastid morphology of dark-grown YHB seedlings, these analyses indicate that the YHB mutant induces constitutive photomorphogenesis via faithful reconstruction of phyB signaling pathways in a light-independent fashion.
A light-independent allele of phytochrome B faithfully recapitulates photomorphogenic transcriptional networks.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A set of NF-κB-regulated microRNAs induces acquired TRAIL resistance in lung cancer.
Cell line
View SamplesWe generated H460 cells with acquired TRAIL resistance by exposing the parental sentisitve cells to subtoxic concentrations of TRAIL for 6 months. Then we compared the gene expression profile of the sensitive versus the resistant cells.
A set of NF-κB-regulated microRNAs induces acquired TRAIL resistance in lung cancer.
Cell line
View SamplesTranscription regulation involves enzyme-mediated changes in chromatin structure. Here, we describe a novel mode of histone crosstalk during gene silencing, in which histone H2A monoubiquitylation is coupled to the removal of histone H3 Lys 36 dimethylation (H3K36me2). This pathway was uncovered through the identification of dRING-associated factors (dRAF), a novel Polycomb group (PcG) silencing complex harboring the histone H2A ubiquitin ligase dRING, PSC and the F-box protein, and demethylase dKDM2. In vivo, dKDM2 shares many transcriptional targets with Polycomb and counteracts the histone methyltransferases TRX and ASH1. Importantly, cellular depletion and in vitro reconstitution assays revealed that dKDM2 not only mediates H3K36me2 demethylation but is also required for efficient H2A ubiquitylation by dRING/PSC. Thus, dRAF removes an active mark from histone H3 and adds a repressive one to H2A. These findings reveal coordinate trans-histone regulation by a PcG complex to mediate gene repression.
dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing.
Cell line
View SamplesInflammation is a key component of pathological angiogenesis. Here we monitor gene expression profiles of the pre-sprouting phase of corneal angiogenesis in the rat model, as influenced by topically applied treatments.
Genome-wide expression differences in anti-Vegf and dexamethasone treatment of inflammatory angiogenesis in the rat cornea.
Sex, Specimen part
View SamplesInflammation is a key component of pathological angiogenesis. Here we induce cornea neovascularisation using sutures placed into the cornea, and sutures are removed to induce a regression phase.
Factors regulating capillary remodeling in a reversible model of inflammatory corneal angiogenesis.
Sex, Specimen part
View SamplesAnalysis of primary bovine aortic endothelial cells treated for 24 hours with TGF-beta 1 5 ng/ml. TGF-beta 1 has been shown to induce endothelial-to-mesenchymal transition (EndoMT) and to be implicated in differentiation of endothelial cells into smooth muscle-like cells as occurred in vascular neointimal formation.
LOXL4 is induced by transforming growth factor β1 through Smad and JunB/Fra2 and contributes to vascular matrix remodeling.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations.
Specimen part
View SamplesPatient-specific induced pluripotent stem cells (iPSCs) derived from somatic cells provide a unique tool for the study of human disease in disease relevant cells, as well as a promising source for cell replacement therapies for degenerative diseases. However one of the crucial limitations before realizing the full promise of this disease in a dish approach has been the inability to do controlled experiments under genetically defined conditions. This is particularly relevant for disorders with long latency periods, such as Parkinsons disease (PD), where in vitro phenotypes of patient-derived iPSCs are predicted to be subtle and susceptible to significant epistatic effects of genetic background variations. By combining zinc-finger nuclease (ZFN)-mediated genome editing and iPSC technology we provide a generally applicable solution to this key problem by generating isogenic pairs of disease and control human embryonic stem cells (hESCs) and hiPSCs lines that differ exclusively at a susceptibility variant for PD by modifying a single point mutation (A53T) in the -synuclein gene. The robust capability to genetically correct disease causing point mutations in patient-derived hiPSCs represents not only a significant progress for basic biomedical research but also a major advancement towards hiPSC-based cell replacement therapies using autologous cells.
Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations.
Specimen part
View Samples