Anaplastic lymphoma kinase (ALK) is expressed in around 60% of glioblastomas and conveys tumorigenic function. Therefore, ALK inhibitory strategies with alectinib were investigated in glioblastoma cells. We demonstrated that alectinib inhibited proliferation and clonogenicity of ALK expressing glioblastoma initiating cells, whereas cells without ALK expression or after ALK depletion via knockdown showed primary resistance against alectinib. The aim of this analysis was to investigate molecular mechanisms of alectinib mediated treatment effects in the ALK expressing S24 cells, which represent a primary glioblastoma cell culture, and after knockdown of ALK.
cMyc and ERK activity are associated with resistance to ALK inhibitory treatment in glioblastoma.
Specimen part, Cell line, Treatment
View SamplesThe alarmins myeloid-related protein (MRP) 8 and MRP14 are the dominant cytoplasmic proteins in phagocytes. After release by activated phagocytes extracellular MRP8/MRP14 complexes promote inflammation in many diseases, including infections, allergies, autoimmune diseases, rheumatoid arthritis or inflammatory bowel disease. As receptors for the pro-inflammatory effects of human MRP8, the active component of the MRP8/MRP14-complex, Toll-like receptor (TLR) 4 and the multi-ligand receptor of advanced glycation end products (RAGE) are controversial discussed. Using a comparative bioinformatics analysis between genome-wide response patterns of monocytes to MRP8, endotoxin and different cytokines we demonstrated a dominant role of TLR4 during MRP8-mediated phagocyte activation. The relevance of this signaling pathway could be confirmed in independent cell models for TLR4 and RAGE dependent signaling in mouse and man. In addition to well-known proinflammatory functions of MRP8 our systems biology approach unraveled a novel anti-apoptotic effect of MRP8 on monocytes which was confirmed in independent functional experiments. Our data define the dominance of the TLR4-MRP8 axis in activation of human phagocytes which represents a novel attractive target for modulation of overwhelming innate immune responses.
Transcriptome assessment reveals a dominant role for TLR4 in the activation of human monocytes by the alarmin MRP8.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptome-based network analysis reveals a spectrum model of human macrophage activation.
Specimen part, Subject, Time
View SamplesMacrophage activation is associated with profound transcriptional reprogramming. Although much progress has been made in the understanding of macrophage activation, polarization and function, the transcriptional programs regulating these processes remain poorly characterized. We stimulated human macrophages with diverse activation signals, acquiring a dataset of 299 macrophage transcriptomes. Analysis of this dataset revealed a spectrum of macrophage activation states extending the current M1 versus M2-polarization model. Network analyses identified central transcriptional regulators associated with all macrophage activation complemented by regulators related to stimulus-specific programs. Applying these transcriptional programs to human alveolar macrophages from smokers and patients with chronic obstructive pulmonary disease (COPD) revealed an unexpected loss of inflammatory signatures in COPD patients. Finally, by integrating murine data from the ImmGen project we propose a refined, activation-independent core signature for human and murine macrophages. This resource serves as a framework for future research into regulation of macrophage activation in health and disease.
Transcriptome-based network analysis reveals a spectrum model of human macrophage activation.
Subject, Time
View SamplesMacrophage activation is associated with profound transcriptional reprogramming. Although much progress has been made in the understanding of macrophage activation, polarization and function, the transcriptional programs regulating these processes remain poorly characterized. We stimulated human macrophages with diverse activation signals, acquiring a dataset of 299 macrophage transcriptomes. Analysis of this dataset revealed a spectrum of macrophage activation states extending the current M1 versus M2-polarization model. Network analyses identified central transcriptional regulators associated with all macrophage activation complemented by regulators related to stimulus-specific programs. Applying these transcriptional programs to human alveolar macrophages from smokers and patients with chronic obstructive pulmonary disease (COPD) revealed an unexpected loss of inflammatory signatures in COPD patients. Finally, by integrating murine data from the ImmGen project we propose a refined, activation-independent core signature for human and murine macrophages. This resource serves as a framework for future research into regulation of macrophage activation in health and disease. Overall design: Since transcriptional programs are further modulated on several levels including miRNAs we assessed the global spectrum of miRNA expression by miRNA-Seq in macrophages stimulated with IFN?, IL4 or with the combination of TNFa, PGE2 and P3C
Transcriptome-based network analysis reveals a spectrum model of human macrophage activation.
No sample metadata fields
View SamplesIn vitro oocyte maturation (IVM) holds great promise as a tool for enhancing clinical treatment of infertility, enhancing availability of non human primates for development of disease models, and facilitating endangered species preservation. However, IVM outcomes have remained significantly below success rates obtained using in vivo matured (VVM) oocytes from humans and non human primates. A cDNA array based analysis is presented, comparing the transcriptomes of VVM oocytes with IVM oocytes. We observe a small set of just 59 mRNAs that are differentially expressed between the two cell types. These mRNAs are related to cellular homeostasis, cell-cell interactions including growth factor and hormone stimulation and cell adhesion, and other functions such as mRNA stability and translation. Additionally, we observe in IVM oocytes overexpression of PLAGL1 and MEST, two maternally imprinted genes, indicating a possible interruption or loss of correct epigenetic programming. These results indicate that, under certain IVM conditions, oocytes that are molecularly highly similar to VVM oocytes can be obtained, however the interruption of normal oocyte-somatic cell interactions during the final hours of oocyte maturation may preclude the establishment of full developmental competence.
Effects of in vitro maturation on gene expression in rhesus monkey oocytes.
No sample metadata fields
View SamplessiRNA-mediated inhibition compared to untreated cells and cells transfected with nonsense siRNA.
Yes-associated protein up-regulates Jagged-1 and activates the Notch pathway in human hepatocellular carcinoma.
Cell line, Treatment
View SamplesThe oocytes of many species, both invertebrate and vertebrate, contain a large collection of localized determinants in the form of proteins and translationally inactive maternal mRNAs. However, it is unknown whether mouse oocytes contain localized MmRNA determinants and what mechanisms might be responsible for their control. We collected intact MII oocytes, enucleated MII oocyte cytoplasts (with the spindle removed), and spindle-chromosome complexes which had been microsurgically removed. RNA was extracted, amplified, labeled, and applied to microarrays to determine if any MmRNA determinants were localized to the SCC.
Association of maternal mRNA and phosphorylated EIF4EBP1 variants with the spindle in mouse oocytes: localized translational control supporting female meiosis in mammals.
Sex, Specimen part, Disease
View SamplesTranscriptional activation in mammalian embryos occurs in a stepwise manner. In mice, it begins at the late one-cell stage, followed by a minor wave of activation at the early two-cell stage, and then the major genome activation (MGA) at the late two-cell stage. Cellular homeostasis, metabolism, cell cycle, and developmental events are orchestrated before MGA by time-dependent changes in the array of maternal transcripts being translated (i.e., the translatome). Despite the importance of maternal mRNA and its correct recruitment for development, neither the array of recruited mRNA nor the regulatory mechanisms operating have been well cheracterized. We present the first comprehensive analysis of changes in the maternal component of the zygotic translatome during the transition from oocyte to late one-cell stage embryo, revealing global transitions in the functional classes of translated maternal mRNAs, and apparent changes in the underlying cis-regulatory mechanisms.
Analysis of polysomal mRNA populations of mouse oocytes and zygotes: dynamic changes in maternal mRNA utilization and function.
No sample metadata fields
View SamplesCumulus oophorus cells play an essential role in oocyte development. CBX4 is a member of the Polycomb complex, which plays a role in regulating cellular differentiation.
Contribution of CBX4 to cumulus oophorus cell phenotype in mice and attendant effects in cumulus cell cloned embryos.
Sex, Specimen part
View Samples