In the present study, we sought to understand the impact of obesity/metabolic disease (high-fat induced) on spinal cord injury (SCI) by examining transcriptome. Adult, male Long Evans rats received either thoracic level contusion of the spinal cord or sham laminectomy and then were allowed to recover on normal rat chow for 4 weeks and further on HFD for an additional 8 weeks. Spinal cord tissues harvested from the rats were processed for Affymetrix microarray and further transcriptomic analysis.
Chronic spinal cord changes in a high-fat diet-fed male rat model of thoracic spinal contusion.
Sex, Specimen part
View SamplesThrough deep sequencing and functional screening in zebrafish, we find that miR-221 is essential for angiogenesis. miR-221 knockdown phenocopied defects associated with loss of the tip cell-expressed Flt4 receptor. Furthermore, miR-221 was required for tip cell proliferation and migration, as well as tip cell potential in mosaic blood vessels. miR-221 knockdown also prevented “hyper-angiogenesis” defects associated with Notch deficiency and miR-221 expression was inhibited by Notch signaling. Finally, miR-221 promoted tip cell behavior through repression of two targets: cyclin-dependent kinase inhibitor 1b (cdkn1b) and phosphoinositide-3-kinase regulatory subunit 1 (pik3r1). These results identify miR-221 as an important regulatory node through which tip cell migration and proliferation are controlled during angiogenesis. Overall design: Identification of endothelial-expressed microRNA from FACS-isolated zebrafish endothelial cells.
miR-221 is required for endothelial tip cell behaviors during vascular development.
No sample metadata fields
View SamplesLbetaT2 cells exposed to different number and concentration of GnRH pulses over 4 hours during in vitro perfusion culture
Pulse sensitivity of the luteinizing hormone beta promoter is determined by a negative feedback loop Involving early growth response-1 and Ngfi-A binding protein 1 and 2.
No sample metadata fields
View SamplesIn the present study, we sought to understand the impact of bariatric surgery [using vertical sleeve gastrectomy (VSG)] on transcriptome changes in the placenta . Female Adult, Long Evans were fed high fat diet (HFD, #D03082706, Research Diets) for 4 weeks, divided into sham-VSG or VSG groups, and following surgeries one group of sham-VSG and VSG were switched to normal diet (lean), while one sham-VSG group (obese) continued HFD. At gestdational day 18, placenta tissues harvested from pregnant female rats were processed for Affymetrix microarray and transcriptomic analysis performed.
Rodent vertical sleeve gastrectomy alters maternal immune health and fetoplacental development.
Age
View SamplesThe C2H2 zinc finger is the most prevalent DNA-binding motif in the mammalian proteome, with DNA-binding domains usually containing more tandem fingers than are needed for stable sequence-specific DNA recognition. To examine the reason for the frequent presence of multiple zinc fingers, we generated mice lacking finger 1 or finger 4 of the 4-finger DNA-binding domain of Ikaros, a critical regulator of lymphopoiesis and leukemogenesis. Each mutant strain exhibited a specific subset of the phenotypes observed with Ikaros null mice. Of particular relevance, fingers 1 and 4 contributed to distinct stages of B- and T-cell development and finger 4 was selectively required for tumor suppression in thymocytes and in a new model of BCR-ABL+ acute lymphoblastic leukemia. These results, combined with transcriptome profiling (this GEO submission: RNA-Seg of whole thymus from wt and the two ZnF mutants), reveal that different subsets of fingers within multi-finger transcription factors can regulate distinct target genes and biological functions, and they demonstrate that selective mutagenesis can facilitate efforts to elucidate the functions and mechanisms of action of this prevalent class of factors. Overall design: Ikaros RNA-Seq from double positive thymocytes comparing wt (n=2), Ikaros-ZnF1-/- mutant (n=2) and Ikaros-ZnF4-/- mutant (n=2)
Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros.
Sex, Age, Specimen part, Cell line, Subject
View SamplesThe C2H2 zinc finger is the most prevalent DNA-binding motif in the mammalian proteome, with DNA-binding domains usually containing more tandem fingers than are needed for stable sequence-specific DNA recognition. To examine the reason for the frequent presence of multiple zinc fingers, we generated mice lacking finger 1 or finger 4 of the 4-finger DNA-binding domain of Ikaros, a critical regulator of lymphopoiesis and leukemogenesis. Each mutant strain exhibited a specific subset of the phenotypes observed with Ikaros null mice. Of particular relevance, fingers 1 and 4 contributed to distinct stages of B- and T-cell development and finger 4 was selectively required for tumor suppression in thymocytes and in a new model of BCR-ABL+ acute lymphoblastic leukemia. These results, combined with transcriptome profiling (this GEO submission: RNA-Seg of whole thymus from wt and the two ZnF mutants), reveal that different subsets of fingers within multi-finger transcription factors can regulate distinct target genes and biological functions, and they demonstrate that selective mutagenesis can facilitate efforts to elucidate the functions and mechanisms of action of this prevalent class of factors. Overall design: RNA-Seq from sorted primary proB cell Hardy Fractions B and C+C'', comparing wt, Ikaros-ZnF1-/- mutant and Ikaros-ZnF4-/- mutant.
Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros.
Specimen part, Cell line, Subject
View SamplesHere we identify a Dicer-independent miRNA biogenesis pathway that employs the slicer catalytic activity of Argonaute2 (Ago2). To uncover Dicer-independent miRNAs, we sequenced small RNAs in wild type, maternal-zygotic dicer (MZdicer) and MZago2 mutants, using zebrafish as a model system. We find that, in contrast to other miRNAs, miR-451 levels were increased in MZdicer but drastically reduced in the MZago2 mutants. We show that pre-miR-451 processing requires Ago2 catalytic activity in vivo. MZago2 mutant embryos display delayed erythrocyte maturation that can be rescued by wild type Ago2 or miR-451 duplex but not catalytically dead Ago2. We propose that Ago2-mediated cleavage of a subset of pre-miRNAs, followed by uridylation and trimming, generates functional miRNAs in a Dicer-independent manner. Overall design: Examination of small RNAs (18 to 35 nucleotides) in 3 different zebrafish genotypes (wild type, MZago2, MZdicer) at 48 hours post-fertilization.
A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity.
No sample metadata fields
View SamplesA number of macrophage and macrophage-like cells are responsible for immune response to challenges. Despite their shared role, these immune cells differ in the inflammatory response and impact on physiology and behavior. The purpose of this study was to profile mRNA levels (transcriptome) to better understand differences between immune cells under homeostasis using two mouse strains. Overall design: total RNA samples were obtained from 12 mice per strain and immune cell type and were subjected to paired-end RNA sequencing
Microglia Transcriptome Changes in a Model of Depressive Behavior after Immune Challenge.
No sample metadata fields
View SamplesPeripheral circadian clocks regulate many aspects of physiology. In this study we deleted the core circadian clock component Bmal1 specifically in mouse adipocytes in order to study the role of the adipocyte clock in energy homeostasis and body weight. We used microarrays to indentify changes in gene expression in the adipose tissue of mice lacking a functional adipocyte circadian clock and identified a small number of up- and down- regulated genes.
Obesity in mice with adipocyte-specific deletion of clock component Arntl.
Specimen part
View SamplesWe addressed the clinical significance and mechanisms behind in vitro cellular responses to ionising radiation (IR)-induced DNA double strand breaks in 74 paediatric ALL patients. We found an apoptosis-resistant response in 36% of patients and an apoptosis-sensitive response in the remaining 64% of leukaemias. Global gene expression profiling of 11 apoptosis-resistant and 11 apoptosis-sensitive ALLs revealed abnormal up-regulation of multiple pro-survival pathways in response to IR in apoptosis-resistant leukaemias and differential post-transcriptional activation of the PI3-Akt pathway was observed in representative resistant cases. It is possible that abnormal pro-survival responses to DNA damage provide one of the mechanisms of primary resistance in ALL .
Stratification of pediatric ALL by in vitro cellular responses to DNA double-strand breaks provides insight into the molecular mechanisms underlying clinical response.
No sample metadata fields
View Samples