Normal human tissue samples from ten post-mortem donors were processed to generate total RNA, which was subsequently analyzed for gene expression using Affymetrix U133 plus 2.0 arrays. Donor information: Donor 1 - 25 year old male; donor 2 - 38 year old male; donor 3 - 39 year old female; donor 4 - 30 year old male; donor 5 - 35 year old male; donor 6 - 52 year old male; donor 7 - 50 year old female; donor 8 - 48 year old female; donor 9 - 53 year old female; donor 10 - 23 year old female
Gene expression analyses reveal molecular relationships among 20 regions of the human CNS.
No sample metadata fields
View SamplesUsing fluorescence activated cell sorting, we isolated CD45+, CSF1R-GFP+, F4/80+, Ly6G- mouse lung monocytes and macrophages at 7 days after pneumonectomy procedure. We then used microfluidic single cell RNA-sequencing to transcriptional profile unique myeloid subsets. Using the pneumonectomy dataset, we identified 6 cell groups and 4 gene groups that marked several regenerative macrophage subsets including CCR2+, Ly6C+ monocytes and CD206+, Chil3+ M2-like macrophages. Overall design: individual macrophages 7 days post-pneumonectomy in a B6 CSF1R-GFP mouse
Recruited Monocytes and Type 2 Immunity Promote Lung Regeneration following Pneumonectomy.
Specimen part, Subject
View SamplesUsing fluorescence activated cell sorting, we isolated CD45+, CSF1R-GFP+, F4/80+, Ly6G- mouse lung monocytes and macrophages at 7 days after sham thoracotomy procedures. We then used microfluidic single cell RNA-sequencing to transcriptional profile unique myeloid subsets. Overall design: After sequencing 31 single cell transcriptomes were analyzed. Hierarcical and k-means clustering reveals several populations of macrophages are present in the lung.
Recruited Monocytes and Type 2 Immunity Promote Lung Regeneration following Pneumonectomy.
Specimen part, Subject
View SamplesGene expression profiles from 280 formalin-fixed and paraffin embedded normal and tumor samples of four cancer types
Regulatory T-cell Genes Drive Altered Immune Microenvironment in Adult Solid Cancers and Allow for Immune Contextual Patient Subtyping.
Sex, Age, Specimen part
View SamplesTreatment of stationary growth phase Staphylococcus aureus SA113 with 100-fold of the MIC of the lipopeptide antibiotic daptomycin leaves alive a small fraction of drug tolerant albeit genetically susceptible bacteria. This study shows that cells of this subpopulation exhibit active metabolism even hours after the onset of the drug challenge. Isotopologue profiling using fully 13C-labeled glucose revealed de novo biosynthesis of the amino acids Ala, Asp, Glu, Ser, Gly and His. The isotopologue composition in Asp and Glu suggested an increased activity of the TCA cycle under daptomycin treatment compared to unaffected stationary growth phase cells. Microarray analysis showed differential expression of specific genes 10 minutes and 3 hours after addition of the drug. Besides factors involved in drug response, a number of metabolic genes appear to shape the signature of daptomycin-tolerant S. aureus cells. These observations will be useful towards the development of new strategies against persisters and related forms of bacterial cells with downshifted physiology.
Metabolic and transcriptional activities of Staphylococcus aureus challenged with high-doses of daptomycin.
No sample metadata fields
View SamplesRhesus macaques (Macaca mulatta) infected with a lethal dose of lymphocytic choriomeningitis virus-strain WE (LCMV-WE) provide a model for Lassa fever virus infection of man. Like Lassa fever in human beings, disease begins with flu-like symptoms but can progress to morbidity fairly rapidly. Previously, we profiled the blood transcriptome of LCMV-infected monkeys (M. Djavani et al. J. Virol. 2007: PMID 17522210) showing distinct pre-viremic and viremic stages that discriminated between virulent and benign infections. In the present study, changes in liver gene expression from macaques infected with virulent LCMV-WE were compared to gene expression in uninfected monkeys as well as to monkeys that were infected but not diseased. We observed gene expression changes that occurred before the viremic stage of the disease, and could potentially serve as biomarkers that discriminate between exposure to a hemorrhagic fever virus and exposure to a benign virus. Based on a functional pathway analysis of differentially expressed genes, virulent LCMV-WE had a much broader effect on liver cell function than non-virulent virus. During the first few days of infection, virulent virus impacted gene expression associated with the generation of energy, such as fatty acid metabolism and glucose metabolism, with the complement and coagulation cascades, and with steroid metabolism, MAPK signaling and cell adhesion. For example, the energy profile resembled that of an organism entering starvation: acetyl-CoA carboxylase, a key enzyme of fatty acid synthesis, was shut down and gene products involved in gluconeogenesis were up-regulated. In conclusion, this study identifies several potential gene markers of LCMV-WE-associated liver disease and contributes to the database of gene expression changes correlated with LCMV pathogenesis in primates.
Gene expression in primate liver during viral hemorrhagic fever.
Specimen part, Time
View SamplesHuman embryonic stem cells were differentiated into peripheral sensory neurons via the intermediate generation of neural crest like cell (NCC). Using various markers we identified these cells as LTMR. We then analyzed there complete transcriptional profile in comparison to the intermediate neural crest like cells. Overall design: mRNA expression data of human ESC-derived sensory neuron clusters (10-20 cells) and human ESC-derived neural crest like cells (~100 cells) was generated by illumina deep sequencing
PIEZO2 is required for mechanotransduction in human stem cell-derived touch receptors.
No sample metadata fields
View SamplesA non-functional myosin Vb motor in duodenal enterocytes results in disruption of epithelial cell polarity characterized by complete loss of microvilli and mislocalization of apical brush border proteins in the cytoplasm which finally cause a devastating disease in neonates with severe malabsorption defects accompanied by protracted diarrhea during infancy, classified as microvillus inclusion disease (MVID). The exact mechanisms how loss-of-function of MYO5B induces polarity loss are not completely understood in MVID pathogenesis. Obtaining better insights in cell polarity defects caused by loss of MYO5B, we performed microarray- in combination with protein expression-analysis in an inducible CaCo2 MYO5B RNAi cell system. Surprisingly, in MYO5B-depleted CaCo2 cells, CDH1 coding for the cell adhesion protein E-Cadherin and important for cell adhesion and therefore maintenance of cell polarity, was significantly downregulated. Interestingly, mesenchymal cell markers, specifically Vimentin and N-Cadherin, physiologically not expressed in differentiated epithelium, were upregulated and accompanied by increased phospho-c-jun levels in the nucleus. Importantly phospho-c-jun was also found in nuclei of duodenal enterocytes in MVID patients, indicating loss of MYO5B induces epithelial cell scattering in enterocytes.
Microvillus inclusion disease: loss of Myosin vb disrupts intracellular traffic and cell polarity.
Specimen part, Cell line
View SamplesComplex three-dimensional (3D) in vitro model systems that recapitulate human tumor biology are essential to better understand the pathophysiology of the disease and to aid in the discovery of novel anti-cancer therapies. 3D organotypic cultures exhibit intercellula communication, nutrient and oxygen gradients, and cell polarity that is lacking in traditional two-dimensional (2D) monolayer cultures. In the present study, we could demonstrate that 2D and 3D cancer models exhibit different drug sensitivities towards both targeted inhibitors of EGFR signaling and broad acting cytotoxic agents. Changes in the kinase activities of Erb family members and differential expression of apoptosis- and survival-associated genes before and after drug treatment may account for the differential drug sensitivities. Importantly, EGFR oncoprotein addiction was evident only in the 3D cultures mirroring the effect of EGFR inhibition in the clinic. Furthermore, targeted drug efficacy was strongly increased when incorporating cancer-associated fibroblasts into the 3D cultures. Taken together, we could provide conclusive evidence that complex 3D cultures are more predictive of the clinical outcome than their 2D counterparts. In the future, 3D cultures will be instrumental for understanding the mode of action of drugs, identifying genotype-drug response relationships and developing patient-specific and personalized cancer treatments.
Organotypic three-dimensional cancer cell cultures mirror drug responses <i>in vivo</i>: lessons learned from the inhibition of EGFR signaling.
Cell line
View SamplesWe compared the heart of 6-weeks-old mice (young) with 18-months-old mice (old)
MicroRNA-34a regulates cardiac ageing and function.
Age, Specimen part
View Samples