Human infection with Cryptococcus neoformans (Cn), a prevalent fungal pathogen, occurs by inhalation and deposition in the lung alveoli of infectious particles. The subsequent host pathogen interaction is multifactorial and can result either in eradication, latency or extra-pulmonary dissemination. Successful control of Cn infection is dependent on host macrophages as shown by numerous studies. However in vitro macrophages display little ability to kill Cn. Recently, we reported that ingestion of Cn by macrophages induces early cell cycle progression that is subsequently followed by mitotic arrest, an event that almost certainly reflects damage to the host cell. The goal of the present work was to understand macrophage pathways affected by Cn toxicity. Infection of J774.16 macrophage-like cell line macrophages by Cn in vitro was associated with changes in gene pattern expression. Concomitantly we observed depolarization of macrophage mitochondria and alterations in protein translation rate. Our results indicate that Cn infection impairs multiple host cellular functions. Therefore we conclude Cn intracellular residence in macrophages undermines the health of these critical phagocytic cells interfering with their ability to clear the fungal pathogen.
Macrophage mitochondrial and stress response to ingestion of Cryptococcus neoformans.
Specimen part, Cell line, Time
View SamplesThe response to growth hormone in humans is dependent on phenotypic, genetic and environmental factors. The present study in children with growth hormone deficiency (GHD) collected worldwide characterised gene-environment interactions on growth response to recombinant human growth hormone (r-hGH). Growth responses in children are linked to latitude, and we found that a correlation of latitude, summer daylight exposure (SDE) was a key environmental factor related to growth response to r-hGH. In turn growth response was determined by an interaction between both SDE and genes known to affect growth response to r-hGH. In addition analysis of associated networks of gene expression implicated a role for circadian clock pathways and specifically the developmental transcription factor NANOG. This work provides the first observation of gene-environment interactions in children treated with r-hGH.
Effect of summer daylight exposure and genetic background on growth in growth hormone-deficient children.
Sex, Age
View SamplesBy utilizing mast cells lacking Dnmt3a, we found that this enzyme is involved in restraining mast cell responses to stimuli, both in vitro and in vivo.
<i>Dnmt3a</i> restrains mast cell inflammatory responses.
Sex, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Canonical and atypical E2Fs regulate the mammalian endocycle.
Age, Specimen part
View SamplesTo understand the underlying cause and mechanisms of changes in hepatocyte ploidy upon Albumin-Cre mediated deletion of E2f7&8 and Mx1-Cre mediated deletion of E2f1,2&3, we analysed global gene expression of 6 weeks and 2 months liver tissues.
Canonical and atypical E2Fs regulate the mammalian endocycle.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Vitamin C supplementation modulates gene expression in peripheral blood mononuclear cells specifically upon an inflammatory stimulus: a pilot study in healthy subjects.
Specimen part
View SamplesA role of vitamin C (ascorbic acid) as an antioxidant molecule has been recognized, largely based on in vitro studies. However, more recently, the concept of antioxidant molecule has been reconsidered and its biological function is no longer considered to be simply due to its ability to act as electron donors, rather, it appears to act by modulating signaling and gene expression.
Vitamin C supplementation modulates gene expression in peripheral blood mononuclear cells specifically upon an inflammatory stimulus: a pilot study in healthy subjects.
Specimen part
View SamplesTo understand the underlying cause for the observed apoptosis in E2f1-3 deficient myeloid cells. We compared gene expression profiles of Cd11b+ sorted myeloid cells isolated from bone marrow of control (E2F1-/- ) and experimental (Mxcre;E2F1-/-2-/-3f/f ) mice.
E2f1-3 are critical for myeloid development.
Age, Specimen part
View SamplesEpigenetic mechanisms contribute to deregulated gene expression of hematopoietic progenitors in Myelodysplastic Syndromes (MDS). Hypomethylating agents are able to improve peripheral cytopenias in MDS patients. To identify critical gene expression changes induced by hypomethylating agents, we analyzed gene expression profiling (GEP) of myelodysplastic and normal CD34+ hematopoietic stem cells treated in vitro with or without decitabine. Four MDS and two untreated early stage Hodgkins lymphomas were analyzed for GEP. Mock treated CD34+ stem cells segregate according to diagnosis and karyotype. After decitabine treatment, gene expression changes were more consistent on MDS CD34+ cells with abnormal kayotype. Comparing decitabine-induced genes with those found down-regulated in mock-treated MDS cells, we identified a list of candidate tumor suppressor genes in MDS. By real-time RT-PCR we confirmed expression changes for three selected genes CD9, CXCR4 and GATA2 in 12 MDS patients and 4 controls. CD9 was widely repressed in most MDS CD34+ cell samples, although similar levels of methylation were found in both normal and MDS total bone marrows. CXCR4 promoter methylation was absent in total bone marrows from 36 MDS patients. In conclusion, changes in gene expression changes induced by hypomethylating treatment are more pronounced in CD34+ cells from abnormal karyotype.
Gene expression profiling of myelodysplastic CD34+ hematopoietic stem cells treated in vitro with decitabine.
Sex, Age, Specimen part, Disease
View SamplesTo identify novel Nurr1 target genes we have used microarrays strategies in rat midbrain primary cultures, enriched in dopaminergic neurons, by the action of basic fibroblast growth factor (bFGF, 20ng/ml) and Sonic hedgedog (SHH), following upregulation of Nurr1 expression by depolarization.To this aim we have treated the cultures after 9 days in vitro for 2h with high KCl and collected 30 min or 2 h after the end of depolarization (2h + 30 min or 2h + 2h). With this experimental protocol we have identify a putative Nurr1 regulator and Nurr1 target
Bdnf gene is a downstream target of Nurr1 transcription factor in rat midbrain neurons in vitro.
Specimen part
View Samples