Disseminated prostate cancer cells colonize the skeleton to progress into macroscopic lesions only if they successfully adapt to the bone microenvironment. We previously reported that the ability of prostate cancer cells to generate skeletal tumors in animal models correlated with the expression of the alpha-receptor for Platelet-Derived Growth Factor (PDGFRa). In this study we aimed to identify PDGFRa-regulated genes responsible for the acquisition of a bone-metastatic prostate phenotype. We performed genome-wide expression comparative analyses of human prostate cancer cell lines that differ for PDGFRa expression and propensity to establish tumors in the skeleton of animal models. We investigated the genes that were differentially regulated in the highly bone-metastatic PC3-ML cells and their low-metastatic counterpart PC3-N cells, and the genes differentially regulated between PC3-N and PC3-N with overexpression of PDGFRa (PC3NRa). We have previously shown that DU-145 cells lack PDGFRa and fail to survive longer than three days as disseminated tumor cells after homing to the mouse bone marrow. Interestingly, and in contrast to PC3-N cells, the exogenous expression of PDGFRa did not promote metastatic bone-tropism of DU-145 cells in our model. Thus, we examined the genes that were differentially regulated between DU-145 and DU-145(Ra) and excluded them from our candidate genes. Finally, to refine our findings and compensate for PC3 and DU-145 genetic disparity, we performed a comparative analysis of the genes differentially regulated between two bone metastatic single-cell progenies that were derived from PC3-ML cells.
Interleukin-1β promotes skeletal colonization and progression of metastatic prostate cancer cells with neuroendocrine features.
Cell line
View SamplesA SNP microarray and FISH-based procedure to detect allelic imbalances in multiple myeloma: an integrated genomics approach reveals a wide dosage effect on gene and microRNA expression
A SNP microarray and FISH-based procedure to detect allelic imbalances in multiple myeloma: an integrated genomics approach reveals a wide gene dosage effect.
Specimen part, Disease
View SamplesMultiple myeloma (MM) is characterized by marked genomic instability. Beyond structural rearrangements, a relevant role in its biology is represented by allelic imbalances leading to significant variations in ploidy status. To better elucidate the genomic complexity of MM, we analyzed a panel of 45 patients using combined FISH and microarray approaches. Using a self-developed procedure to infer exact local copy numbers for each sample, we identified a significant fraction of patients showing marked aneuploidy. A conventional clustering analysis showed that aneuploidy, chromosome 1 alterations, hyperdiploidy and recursive deletions at 1p and chromosomes 13, 14 and 22 were the main aberrations driving samples grouping. Then, we integrated mapping information with gene and microRNAs expression profiles: a multiclass analysis of the identified clusters showed a marked gene-dosage effect, particularly concerning 1q transcripts, also confirmed by correlating gene expression levels and local copy number alterations. A wide dosage effect affected also microRNAs, indicating that structural abnormalities in MM closely reflect in their expression imbalances. Finally, we identified several loci in which genes and microRNAs expression correlated with loss-of-heterozygosity occurrence. Our results provide insights into the composite network linking genome structure and gene/microRNA transcriptional features in MM.
A SNP microarray and FISH-based procedure to detect allelic imbalances in multiple myeloma: an integrated genomics approach reveals a wide gene dosage effect.
Specimen part, Disease
View SamplesSmall nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs (scaRNAs) are non-coding RNAs involved in the maturation of other RNA molecules and generally located in the introns of host genes. It is now emerging that altered sno/scaRNAs expression may play a pathological role in cancer. This study elucidates the patterns of sno/scaRNAs expression in multiple myeloma (MM), by profiling puri?ed malignant plasma cells from 55 MMs, 8 secondary plasma cell leukemias (sPCL) and 4 normal controls. Overall, a global sno/scaRNAs down-regulation was found in MMs and at more extent in sPCLs compared to normal plasma cells. Whereas SCARNA22 resulted the only sno/scaRNA characterizing the TC4 MM, TC2 group displayed a distinct sno/scaRNA signature overexpressing members of SNORD115 and SNORD116 families located in a region finely regulated by imprinting mechanism at 15q11. However, the imprinting center resulted overall hypomethylated in MMs independently of the SNORD115 and SNORD116 expression levels. Finally, integrative analyses with available gene expression and genome-wide data revealed the occurrence of significant sno/scaRNAs/host genes co-expression and the putative influence of allelic imbalances on specific snoRNAs expression. Our data extend the current view of sno/scaRNAs deregulation in cancer and add novel information into the bio-molecular complexity of plasma cell dyscrasias.
The expression pattern of small nucleolar and small Cajal body-specific RNAs characterizes distinct molecular subtypes of multiple myeloma.
Specimen part, Disease, Disease stage
View SamplesHuman adenovirus 5 encodes a small set of miRNAs, which are generated by DICER-mediated processing of 2 larger precursors, the so-called virus-associated RNAs I and II. To identify targets of one of the major miRNA isoforms derived from virus-associated RNAI (mivaRNAI-137), we isolated Argonaute complexes of mivaRNAI-137-transfected cells and analyzed co-purifying RNAs by microarray analysis. RNAs enriched in Argonaute complexes of mivaRNAI-137-transfected cells compared to cells transfected with a control siRNA were identified and subjected to further validation. RNAs specifically associated with Argonaute-containining complexes of adenovirus 5-infected cells were identified as well.
Identification of RISC-associated adenoviral microRNAs, a subset of their direct targets, and global changes in the targetome upon lytic adenovirus 5 infection.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Molecular spectrum of BRAF, NRAS and KRAS gene mutations in plasma cell dyscrasias: implication for MEK-ERK pathway activation.
Specimen part, Cell line
View SamplesMultiple myeloma (MM) is a malignant disorder characterized by the clonal proliferation of plasma cells (PCs) in the bone marrow (BM). The genetic background and clinical course of the disease are largely heterogeneous, and MM pathophysiology ranges from the premalignant condition of monoclonal gammopathy of undetermined significance (MGUS) to smoldering MM, symptomatic MM, and extramedullary MM/plasma cell leukemia (PCL). Recent genome-wide sequencing efforts have provided the rationale for molecularly aimed treatment approaches, identifying mutations that can be specifically targeted, such as those in the mitogen-activated protein kinase (MAPK) pathway, which represent the most prevalent mutations in MM. Among these, mutations affecting BRAF gene, detected in 4-15% of patients, are of potential immediate clinical relevance due to the availability of effective inhibitors of this serine-threonine kinase which are in fact being explored also in myeloma.
Molecular spectrum of BRAF, NRAS and KRAS gene mutations in plasma cell dyscrasias: implication for MEK-ERK pathway activation.
Specimen part
View SamplesMultiple myeloma (MM) is a malignant disorder characterized by the clonal proliferation of plasma cells (PCs) in the bone marrow (BM). The genetic background and clinical course of the disease are largely heterogeneous, and MM pathophysiology ranges from the premalignant condition of monoclonal gammopathy of undetermined significance (MGUS) to smoldering MM, symptomatic MM, and extramedullary MM/plasma cell leukemia (PCL). Recent genome-wide sequencing efforts have provided the rationale for molecularly aimed treatment approaches, identifying mutations that can be specifically targeted, such as those in the mitogen-activated protein kinase (MAPK) pathway, which represent the most prevalent mutations in MM. Among these, mutations affecting BRAF gene, detected in 4-15% of patients, are of potential immediate clinical relevance due to the availability of effective inhibitors of this serine-threonine kinase which are in fact being explored also in myeloma.
Molecular spectrum of BRAF, NRAS and KRAS gene mutations in plasma cell dyscrasias: implication for MEK-ERK pathway activation.
Specimen part, Cell line
View SamplesB-cell chronic lymphocytic leukemia (B-CLL) is characterized by a highly variable clinical course that reflects its heterogeneous genomic pattern. To better define molecular subtypes of the disease, we performed SNP and gene expression profiling microarray analyses in a panel of early stage (Binet A) patients. A clustering analysis of genomic profiles identified four significant groups mainly driven by del(13)(q14) and trisomy 12. Notably, patients with del(13)(q14) were grouped in two separate clusters based on the presence of a biallelic loss and the extension of the deletion. The shorter monoallelic deleted 13q14 region was found to be 635 kb in length, not encompassing the mir-15a/16-1 locus. Interestingly, the mir-15a and mir-16 expression was found to be significantly down-regulated only in patients with biallelic loss. Furthermore, a multiclass supervised analysis identified a different transcriptional signatures in the two genomic subgroups with del(13)(q14). Finally, an integrative approach identified 93 transcripts, mainly mapped to chromosome 12 and 13q12-q14.3, whose expression was significantly correlated with the DNA copy number. Overall, our data further support the notion that transcription deregulation in B-CLL could be mostly due to a gene dosage effect and underscore the presence of two distinct molecular types of 13q14 deleted patients with potential clinical relevance.
Integrative genomics analyses reveal molecularly distinct subgroups of B-cell chronic lymphocytic leukemia patients with 13q14 deletion.
Sex, Specimen part, Disease
View SamplesDistinct genetic abnormalities such as TP53 deletion at 17p13.1, have been identified as having an adverse prognostic relevance in B-cell chronic lymphocytic leukemia (B-CLL). Conventional cytogenetic studies have shown that TP53 deletion in B-CLL is associated predominantly with 17p loss resulting from complex chromosomal rearrangements. We performed genome-wide DNA (SNPs arrays), fluorescence in situ hybridization (FISH) and gene expression profiling (GEP) analyses to investigate the significance of 17p loss in a panel of 71 genetically well-characterized B-CLLs in Binet stage A, 18 of which carried a TP53 monoallelic deletion. Combined SNP arrays and FISH approaches showed 17p loss in all of the TP53-deleted cases, with breakpoints scattered along the 17p11.2 region. Mutations in exons 5 to 9 of TP53 were found in 9/12 deleted samples. GEP of 60 B-CLLs, including 7 patients with 17p loss, identified 40 differentially expressed genes in 17p- versus 17p normal samples, 35 of which were down-regulated in 17p- tumors. The majority (30/35) of these transcripts, including putative tumor suppressor genes, mapped to 17p. Overall, these data indicate that, beside TP53 deletion, the concomitant loss of 17p arm may contribute to the strong negative prognostic impact known to be associated with this lesion in B-CLL.
Molecular and transcriptional characterization of 17p loss in B-cell chronic lymphocytic leukemia.
Sex
View Samples