Analysis of rapamycin effects on white adipose tissue at gene expression level. The hypothesis tested in the present study was that rapamycin could modify immune cell composition and inflammatory state of the adipose tissue of obese mice.
Beneficial metabolic effects of rapamycin are associated with enhanced regulatory cells in diet-induced obese mice.
Age, Specimen part
View SamplesQuaking are RNA binding proteins, which are known to regulate the expression of different genes at the post-transcriptional level. Genetic interference with quaking a (qkia) and quaking c (qkic) leads to major myofibril defects during zebrafish development, without affecting early muscle differentiation. In order to understand how qkia and qkic jointly regulate myofibril formation, we performed a comparative analysis of the transcriptome of qkia/qkic (qkia mutant injected with qkic morpholino) versus control embryos. We show that Quaking activity is required for accumulation of the muscle-specific tropomyosin 3 transcript, tpm3.1. Whereas interference with tmp3.1 function disrupts myofibril formation, reintroducing tpm3.1 transcripts into embryos with reduced Quaking activity can restore structured myofibrils. Thus, we identify tropomyosin as an essential component in the process of myofibril formation and as a relay downstream of the regulator proteins Quaking. Overall design: Transcriptome of control versus qkia/qkic embryos at 24-26hpf. Biological triplicate were prepared for both condition (3x2 samples).
Quaking RNA-Binding Proteins Control Early Myofibril Formation by Modulating Tropomyosin.
No sample metadata fields
View SamplesMissense mutations in the gene for the ubiquitously expressed superoxide dismutase-1 (SOD1) are one of the causes of familial amyotrophic lateral sclerosis (ALS), the most common adult onset motor neuron disease in humans killing selectively large motor neurons. Mice and rats overexpressing mutant SOD1 develop an adult onset neurodegenerative disease with hindlimb-paralysis and subsequent death similar to the human condition. In order to analyze the effects of mutant SOD1 expression onto the most affected cell-type in ALS, a small subpopulation of spinal cord cells, we propose to use laser microdissection to isolate mouse lumbar motor neurons and to assess the changes onto the mRNA expression profile using Affymetrix GeneChips compared to control animals. While two studies applying a genomic approach on the ALS mouse models used the entire spinal cord, contributions of changes to motor neurons were masked by the inflammatory effects of mutant SOD1 and the much larger population of non-motor neuronal cells. What is therefore needed is a cell-type specific expression profile that could reveal dysregulations in the transcriptome of the affected motor neurons.
Toxicity from different SOD1 mutants dysregulates the complement system and the neuronal regenerative response in ALS motor neurons.
No sample metadata fields
View SamplesRecent advances in single-cell transcriptomic profiling have provided unprecedented access to investigate cell heterogeneity during tissue and organ development. Here, we utilized massively parallel single-cell RNA sequencing to define cell heterogeneity within the zebrafish kidney marrow, constructing a comprehensive molecular atlas of definitive hematopoiesis and functionally-distinct renal cells found in adult zebrafish. Because our method analyzed blood and kidney cells in an unbiased manner, our approach was useful in characterizing immune cell deficiencies within prkdcD3612fs, il2rgaY91fs and double homozygous mutant fish, identifying blood cell losses in T, B, and natural killer cells within specific genetic mutants. Our analysis also uncovered novel cell types including two classes of natural killer immune cells, classically-defined and erythroid-primed hematopoietic stem and progenitor cells, mucin secreting kidney cells, and kidney stem/progenitor cells. In total, our work provides the first comprehensive single cell transcriptomic analysis of kidney and marrow cells in the adult zebrafish. Overall design: The goal of our study is to establish the transcriptional profiles of hematopoietic and kidney cell lineages residing in the zebrafish whole kidney marrow. Firstly, we performed single-cell RNA sequencing by a modified Smart-seq2 protocol on sorted single cells from fluorescent transgenic zebrafish lines, which label distinct blood cell types (n = 246 cells total). Secondly, we utilized droplet-based single-cell RNA sequencing (inDrop) to investigate unmarked, comprehensive hematopoietic lineage structure within wild-type, casper-strain zebrafish (N=3 animals, n=3,782 cells total). From this, we identified ten distinct hematopoietic groups of blood and immune identities. Thirdly, we confirmed blood lineage interpretations by comparing hematopoietic lineages within wild-type fish with mutant zebrafish with known immunodeficiencies, including prkdc(D3612fs) (N=3 animals, n=3,201 cells), il2rga(Y91fs) (N=2 animals, n=2,068 cells) and prkdc(D3612fs), il2rga(Y91fs) double compound mutant fish (N=2 animals, n=2,276 cells). Lastly, we identified seven structural and functional cell lineages of kidney identities in the whole kidney marrow (n=1,699 kidney cells).
Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing.
Specimen part, Subject
View SamplesRecent advances in single-cell transcriptomic profiling have provided unprecedented access to investigate cell heterogeneity during tissue and organ development. Here, we utilized massively parallel single-cell RNA sequencing to define cell heterogeneity within the zebrafish kidney marrow, constructing a comprehensive molecular atlas of definitive hematopoiesis and functionally-distinct renal cells found in adult zebrafish. Because our method analyzed blood and kidney cells in an unbiased manner, our approach was useful in characterizing immune cell deficiencies within prkdcD3612fs, il2rgaY91fs and double homozygous mutant fish, identifying blood cell losses in T, B, and natural killer cells within specific genetic mutants. Our analysis also uncovered novel cell types including two classes of natural killer immune cells, classically-defined and erythroid-primed hematopoietic stem and progenitor cells, mucin secreting kidney cells, and kidney stem/progenitor cells. In total, our work provides the first comprehensive single cell transcriptomic analysis of kidney and marrow cells in the adult zebrafish. Overall design: The goal of our study is to establish the transcriptional profiles of hematopoietic and kidney cell lineages residing in the zebrafish whole kidney marrow. Firstly, we performed single-cell RNA sequencing by a modified Smart-seq2 protocol on sorted single cells from fluorescent transgenic zebrafish lines, which label distinct blood cell types (n = 246 cells total). Secondly, we utilized droplet-based single-cell RNA sequencing (inDrop) to investigate unmarked, comprehensive hematopoietic lineage structure within wild-type, casper-strain zebrafish (N=3 animals, n=3,782 cells total). From this, we identified ten distinct hematopoietic groups of blood and immune identities. Thirdly, we confirmed blood lineage interpretations by comparing hematopoietic lineages within wild-type fish with mutant zebrafish with known immunodeficiencies, including prkdc(D3612fs) (N=3 animals, n=3,201 cells), il2rga(Y91fs) (N=2 animals, n=2,068 cells) and prkdc(D3612fs), il2rga(Y91fs) double compound mutant fish (N=2 animals, n=2,276 cells). Lastly, we identified seven structural and functional cell lineages of kidney identities in the whole kidney marrow (n=1,699 kidney cells).
Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing.
Specimen part, Subject
View SamplesDepolarization of resting membrane potential in select cells in Xenopus larvae induces striking hyperpigmentation due to dysregulation of melanocytes. Here, we show that this non-cell-autonomous process is mediated by cAMP, CREB, and the transcription factors Sox10 and Slug. Our microarray analysis reveals specific transcripts responsive to Vmem levels within a few hours of depolarization, and a set of 517 transcripts whose expression remains altered during the full hyperpigmented phenotype over a week later, linking instructor cell-depolarization to a range of developmental processes and disease states. We also show that voltage-dependent conversion of melanocytes involves the MSH-secreting melanotrope cells of the pituitary, and formulate a model for the molecular pathway linking the bioelectric properties of melanocyte cells microenvironment in vivo to the genetic and cellular changes induced in this melanoma-like phenotype. Remarkably, the phenotype is all-or-none: each individual animal either undergoes melanocyte conversion or not, as a whole. This group decision is stochastic, resulting in varying percentages of hyperpigmented individuals for a given experimental treatment. To understand the stochasticity and dynamic properties of this complex signaling system, we developed a novel computational method that automates the reverse-engineering of stochastic dynamic signaling models. We used this method to discover a network model that quantitatively explained our complex dataset, and even made correct predictions for new experiments that we validated in vivo. Taken together, these data (1) reveal new molecular details about a novel trigger of metastatic-like developmental cell behavior in vivo, (2) suggest new targets for biomedical intervention, and (3) demonstrate proof-of-principle of a computational method for understanding stochastic decision-making by cells during embryonic development and metastasis.
Serotonergic regulation of melanocyte conversion: A bioelectrically regulated network for stochastic all-or-none hyperpigmentation.
Specimen part
View SamplesWe report a highly-penetrant form of obesity, initially observed in 31 heterozygous carriers of a 593kb or larger deletion at 16p11.2 from amongst subjects ascertained for cognitive deficits. Nineteen similar deletions were identified from GWAS data in 16053 individuals from 8 European cohorts; such deletions was absent from healthy non-obese controls and accounted for 0.7% of our morbid obesity cases (p = 6.4x10-8, OR = 43). These findings highlight a promising strategy for identifying missing heritability in obesity and other complex traits, in which insights from rare extreme cases can be used to elucidate the basis for more common phenotypes.
A new highly penetrant form of obesity due to deletions on chromosome 16p11.2.
Specimen part, Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Serially transplantable mammary epithelial cells express the Thy-1 antigen.
Specimen part
View SamplesEnriched cell populations from murine mammary epithelium were isolated by FACS and subjected to Affymetrix Mouse 430 2.0 microarray analysis.
Serially transplantable mammary epithelial cells express the Thy-1 antigen.
Specimen part
View SamplesEnriched cell populations from murine mammary epithelium were isolated by FACS and subjected to Affymetrix Mouse 430 2.0 microarray analysis.
Serially transplantable mammary epithelial cells express the Thy-1 antigen.
Specimen part
View Samples