Background: Survival and function of insulin-secreting pancreatic -cells are markedly altered by changes in nutrient availability. In vitro, culture in 10 rather than 2mM glucose improves rodent -cell survival and function whereas glucose concentrations above 10mM are deleterious. Aim-Method: To identify the mechanisms of such -cell plasticity, we tested the effects of a 18h culture at 2, 5, 10 and 30mM glucose on the transcriptome of rat islets precultured for 1 week at 10mM glucose (Affymetrix Rat 230.2 arrays). Results: Culture in either 2-5mM or 30mM instead of 10mM glucose markedly impaired -cell function without affecting islet cell survival. Of ~16000 probe sets reliably detected in islets, ~5000 were significantly regulated at least 1.4-fold by glucose. Analysis of these probe sets with GeneCluster software identified 10 mRNA profiles with unidirectional up- or down-regulation between 2 and 10, 2 and 30, 5 and 10, 5 and 30 or 10 and 30 mM glucose, and 8 complex V-shaped or inverse V-shaped profiles with a nadir or peak level of expression in 5 or 10mM glucose. Analysis of genes belonging to these various clusters with Onto-express and GenMapp software revealed several signaling and metabolic pathways that may contribute to the induction of -cell dysfunction and apoptosis after culture in low or high vs. intermediate glucose concentration. Conclusion: We have identified 18 distinct mRNA profiles of glucose-induced changes in islet gene mRNA levels that should help understanding the mechanisms by which glucose affects -cell survival and function under states of chronic hypo- or hyperglycemia.
Cluster analysis of rat pancreatic islet gene mRNA levels after culture in low-, intermediate- and high-glucose concentrations.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative cross-omics analysis in primary mouse hepatocytes unravels mechanisms of cyclosporin A-induced hepatotoxicity.
Specimen part
View SamplesThe transcriptomics changes induced in Primary Mouse Hepatocytes by Cyclosporin A after treatment for 24h and 48h
Integrative cross-omics analysis in primary mouse hepatocytes unravels mechanisms of cyclosporin A-induced hepatotoxicity.
Specimen part
View SamplesInfluence of ovarian stimulation with 200 IU of hCG, (administered in the late follicular phase among ICSI patients undergoing a GnRH-antagonist protocol), on the endometrium on the day of oocyte pick-up.
Gene expression profile in the endometrium on the day of oocyte retrieval after ovarian stimulation with low-dose hCG in the follicular phase.
Specimen part, Treatment
View SamplesEarly during culture of primary mouse HSCs gene expression changes.
Gene expression profiling of early hepatic stellate cell activation reveals a role for Igfbp3 in cell migration.
Specimen part
View SamplesHypocalcemic vitamin D analogs are appealing molecules to exploit the immunomodulatory actions of active vitamin D in vivo. The functional modulation of dendritic cells is regarded as the key mechanism underlying their ability to regulate T cell responses. In contrast, the direct actions of vitamin D and structural analogs on T lymphocytes remain less well characterized.
The vitamin D analog, TX527, promotes a human CD4+CD25highCD127low regulatory T cell profile and induces a migratory signature specific for homing to sites of inflammation.
Specimen part, Subject
View SamplesIn GnRH-antagonist/rec-FSH stimulated cycles, advanced endometrial maturation on the day of oocyte retrieval correlates with altered gene expression
In GnRH antagonist/rec-FSH stimulated cycles, advanced endometrial maturation on the day of oocyte retrieval correlates with altered gene expression.
No sample metadata fields
View SamplesWe used microarrays to compare gene expression across different murine tissues.
Using ribosomal protein genes as reference: a tale of caution.
No sample metadata fields
View SamplesABSTRACT:Pregnancy requires a higher functional beta cell mass and this is associated with profound changes in the gene expression profile of pancreatic islets. Taking Tph1 as a sensitive marker for pregnancy-related islet mRNA expression in female mice, we previously identified prolactin receptors and placental lactogen as key signalling molecules. Since beta cells from male mice also express prolactin receptors, the question arose whether male and female islets have the same phenotypic resilience at the mRNA level during pregnancy. We addressed this question in vitro, by using islet tissue culture with placental lactogen and in vivo, by transplanting male or female islets into female acceptor mice. Additionally, the islet mRNA expression of pregnant prolactin receptor deficient mice was compared with that of their pregnant wild-type littermates. When cultured with placental lactogen, or transplanted in female recipients that became pregnant (day 12.5), male islets induced the islet pregnancy gene signature, which we defined as the 12 highest induced genes in non-transplanted female islets at day 12.5 of pregnancy. In addition, serotonin immunoreactivity was also induced in these male transplanted islets at day 12.5 of pregnancy. In order to investigate the importance of prolactin receptors in these mRNA changes we used a prolactin receptor deficient mouse model. For the 12 genes of the signature, which are highly induced in control pregnant mice, no significant induction of mRNA transcripts was found at day 9.5 of pregnancy. Together, our results support the key role of placental lactogen as a circulating factor that can trigger the pregnancy mRNA profile in male and female beta cells.
Prolactin receptors and placental lactogen drive male mouse pancreatic islets to pregnancy-related mRNA changes.
Sex, Specimen part
View SamplesPremature progesterone (P) rise during GnRH antagonist cycles for IVF is a frequent phenomenon and has been associated with lower pregnancy and implantation rates. Different thresholds of progesterone have been used so far to define its premature rise during the follicular phase of an IVF stimulated cycle. In this study, we evaluated endometrial gene expression on the day of oocyte retrieval according to the level of serum progesterone on the day of hCG administration in GnRH antagonist cycles.Endometrial biopsies from eleven patients were taken with a Pipelle de Cornier (Prodimed, Neuilly-en-Thelle, France) on the day of oocyte retrieval in a GnRH antagonist/rec-FSH stimulated IVF cycle with fresh embryo transfer. Biopsies were analysed for gene expression with Affymetrix Human Genome (HG) U133 Plus 2.0 Arrays and GCOS software (Affymetrix, Santa Clara, CA, USA). Patients were divided into three different groups according to their progesterone serum concentration on the day of hCG administration (A) P <= 0.9 ng/mL, (B) 1 < P < 1.5 ng/mL, and (C) P > 1.5 ng/mL. Serum P was measured with the automated Elecsys immunoanalyser (Roche Diagnostics, Mannheim, Germany). Selected differentially expressed genes were validated with quantitative real-time PCR (QPCR) with TaqMan Gene Expression Assays (Applied Biosystems, Foster City, CA, USA).
Progesterone rise on HCG day in GnRH antagonist/rFSH stimulated cycles affects endometrial gene expression.
Specimen part
View Samples