Identifying novel candidate biomarker gene differentially expressed in the peripheral blood cells of patients with early stage acute myocardial infarction using microarray as a high throughput screening technology.
Novel genes detected by transcriptional profiling from whole-blood cells in patients with early onset of acute coronary syndrome.
Specimen part, Disease, Time
View SamplesThe Acute Respiratory Distress Syndrome (ARDS)/Acute Lung Injury (ALI) was described 30 years ago, yet the interaction between specific sets of genes involved in this syndrome remains incompletely understood.
Discovery of the gene signature for acute lung injury in patients with sepsis.
No sample metadata fields
View SamplesMicroarray analysis of total RNA isolated from samples of circulating tumor cells from 7 patients before romidepsin infusion (0 hours), at 4 h after initiation of the infusion (4 hours) and 24 h after initiation of the infusion (24 hours).
MAPK pathway activation leads to Bim loss and histone deacetylase inhibitor resistance: rationale to combine romidepsin with an MEK inhibitor.
No sample metadata fields
View SamplesHepG2 and THP-1 cells, the latter differentiated by phorbol 12-myristate 13-acetate (PMA), were co-cultured and characterized for typical liver-specific functions, such as xenobiotic detoxification, lipid and cholesterol metabolism. Furthermore, liver injury-associated pathways, such as inflammation, were studied. In general, the co-cultivation of these cells produced a pro-inflammatory system, as indicated by increased levels of cytokines (IL-8, TGF-α, IL-6, GM-CSF, G-CSF, TGF-β, and hFGF) in the respective supernatant. Increased expression levels of target genes of the aryl hydrocarbon receptor (AHR), e.g., CYP1A1, CYP1A2 and CYP1B1, were detected, accompanied by the increased enzyme activity of CYP1A1. Moreover, transcriptome analyses indicated a significant upregulation of cholesterol biosynthesis, which could be reduced to baseline levels by lovastatin. In contrast, total de novo lipid synthesis was reduced in co-cultured HepG2 cells. Key events of the adverse outcome pathway (AOP) for fibrosis were activated by the co-cultivation, however, no increase in the concentration of extracellular collagen was detected. This indicates, that AOP should be used with care. In summary, the indirect co-culture of HepG2/THP 1 cells results in an increased release of pro-inflammatory cytokines, an activation of the AHR pathway and an increased enzymatic CYP1A activity.
Indirect co-cultivation of HepG2 with differentiated THP-1 cells induces AHR signalling and release of pro-inflammatory cytokines.
Treatment
View SamplesNumerous CD11b+ myeloid cells are present within the dermis. They are very heterogeneous and can be divided in dermal DCs, tissue monocytes and tissue macrophages. At steady state, only CD11b+ DC migrate from the dermis to the skin draining lymph nodes whereas upon DNFB-induced inflammation, CD11b+ DC as well as dermal monocytes migrated to the lymph nodes. The objective of this study was to use gene expression profiling to rigorously identify the different subsets of dermal CD11b+ myeloid cells at steady state and upon inflammation and to characterize their functional potential.
Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin.
Sex, Age, Specimen part
View SamplesAnaplastic large cell lymphomas (ALCLs) are CD30-positive T-cell non-Hodgkin lymphomas broadly segregated into ALK-positive and ALK-negative types. While ALK-positive ALCLs consistently bear rearrangements of the ALK tyrosine kinase gene, ALK-negative ALCLs are clinically and genetically heterogeneous. About 30% of ALK-negative ALCLs have rearrangements of DUSP22 and have excellent long-term outcomes with standard therapy. To better understand this group of tumors, we evaluated their molecular signature using gene expression profiling. DUSP22-rearranged ALCLs belonged to a distinct subset of ALCLs that lacked expression of genes associated with JAK-STAT3 signaling, a pathway contributing to growth in the majority of ALCLs. Reverse-phase protein array and immunohistochemical studies confirmed the lack of activated STAT3 in DUSP22-rearranged ALCLs. DUSP22-rearranged ALCLs also overexpressed immunogenic cancer-testis antigen (CTA) genes and showed marked DNA hypomethylation by reduced representation bisulfate sequencing and DNA methylation arrays. Pharmacologic DNA demethylation in ALCL cells recapitulated the overexpression of CTAs and other DUSP22 signature genes. Additionally, DUSP22-rearranged ALCLs minimally expressed PD-L1 compared to other ALCLs, but showed high expression of the costimulatory gene CD58 and HLA class II. Taken together, these findings indicate that DUSP22 rearrangements define a molecularly distinct subgroup of ALCLs and that immunogenic cues related to antigenicity, costimulatory molecule expression, and inactivity of the PD-1/PD-L1 immune checkpoint likely contribute to their favorable prognosis. More aggressive ALCLs might be pharmacologically reprogrammed to a DUSP22-like, immunogenic molecular signature through the use of demethylating agents and/or immune checkpoint inhibitors.
Molecular profiling reveals immunogenic cues in anaplastic large cell lymphomas with <i>DUSP22</i> rearrangements.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Broad and Largely Concordant Molecular Changes Characterize Tolerogenic and Immunogenic Dendritic Cell Maturation in Thymus and Periphery.
Specimen part, Treatment
View SamplesThis series contains re-analyzed samples from GSE39555, GSE39556 and GSE15907.
Broad and Largely Concordant Molecular Changes Characterize Tolerogenic and Immunogenic Dendritic Cell Maturation in Thymus and Periphery.
Specimen part
View SamplesDendritic cells (DC) play critical roles in central and peripheral T cell tolerance. DC found in the steady-state periphery undergo an homeostatic, tolerogenic, maturation that promotes interaction with naive T cells and induction of abortive responses. In contrast, thymic DC are thought to exist solely in an immature state. In this study, we show that XCR1+ thymic DC constitutively mature into a stage characterized by high levels of molecules involved in T cell activation. This unanticipated mature stage corresponded to a third of the XCR1+ thymic DC and fully accounted for their ability to cross-present self-antigens to developing T cells. Transcriptomic analysis of the XCR1+ DC found in thymus and steady-state periphery revealed that their maturation involves profound and convergent changes. Unexpectedly, maturation resulted in down-regulation of genes conferring their specific function on XCR1+ DC. Paradoxically, upon maturation, central and peripheral tolerogenic XCR1+ DC up-regulated many genes thought to drive pro-inflammatory T-cell responses. These events occur independtly of type I interferons and of the microlofora, since the same maturation pattern is observed in XCR1+ tDcs from control, Ifnar1-KO and germ-free mice. Thus, our results reveal that thymic XCR1+ DC undergo constitutive maturation and emphasize the common mechanisms operating for both central and peripheral tolerance induction by XCR1+ DC.
Broad and Largely Concordant Molecular Changes Characterize Tolerogenic and Immunogenic Dendritic Cell Maturation in Thymus and Periphery.
Specimen part, Treatment
View SamplesDendritic cells (DC) play critical roles in central and peripheral T cell tolerance. DC found in the steady-state periphery undergo an homeostatic, tolerogenic, maturation that promotes interaction with naive T cells and induction of abortive responses. In contrast, thymic DC are thought to exist solely in an immature state. In this study, we show that XCR1+ thymic DC constitutively mature into a stage characterized by high levels of molecules involved in T cell activation. This unanticipated mature stage corresponded to a third of the XCR1+ thymic DC and fully accounted for their ability to cross-present self-antigens to developing T cells. Transcriptomic analysis of the XCR1+ DC found in thymus and steady-state periphery revealed that their maturation involves profound and convergent changes. Unexpectedly, maturation resulted in down-regulation of genes conferring their specific function on XCR1+ DC. Paradoxically, upon maturation, central and peripheral tolerogenic XCR1+ DC up-regulated many genes thought to drive pro-inflammatory T-cell responses. Thus, our results reveal that thymic XCR1+ DC undergo constitutive maturation and emphasize the common mechanisms operating for both central and peripheral tolerance induction by XCR1+ DC.
Broad and Largely Concordant Molecular Changes Characterize Tolerogenic and Immunogenic Dendritic Cell Maturation in Thymus and Periphery.
Specimen part, Treatment
View Samples