Pro-inflammation triggered by microbial lipopolysaccharide (LPS) through Toll-like receptor (TLR) 4 in the presence of interferon (IFN)-g induces cytokine secretion in dendritic cells (DCs) tightly regulated by a defined differentiation program. This DC differentiation is characterized by a dynamic immune activating but also tolerance inducing phenotype associated with irreversible down-modulation of cytokines. CD40L on activated T cells further modifies DC differentiation. Using DNA micro arrays we showed down-regulated mRNA levels of TLR signaling molecules while CD40/CD40L signaling molecules were up-regulated at a time when LPS/IFN-g activated DCs have ceased cytokine expression. Accordingly we demonstrated that CD40/CD40L but not TLR4 or TLR3 signaling mediated by LPS or poly (cytidylic-inosinic) acid (poly I:C) and dsRNA re-established the capacity to secret interleukin (IL)-12 in LPS/IFN-g activated DCs, which have exhausted their potential for cytokine secretion. This resulting TH1 polarizing DC phenotype which lacked accompanying secretion of the crucial immune suppressive IL-10 - enhanced activation of cytotoxic T lymphocytes (CTLs). We therefore conclude that immune modulation is restricted to a secondary T-cell mediated stimulus at an exhausted DC state which prevents an immune tolerant DC phenotype. These findings impacts on the rational design of TLR activated DC-based cancer vaccines for the induction of anti-tumoral CTL responses.
CD40 ligation restores type 1 polarizing capacity in TLR4-activated dendritic cells that have ceased interleukin-12 expression.
No sample metadata fields
View SamplesThe transcription factor GATA3 is essential for luminal cell differentiation during mammary gland development and critical for formation of the luminal subtypes of breast cancer. Ectopic expression of GATA3 promoted global alterations of the transcriptome of basal triple-negative breast cancer cells resulting in molecular and cellular changes associated with a more differentiated, luminal tumor subtype and a concomitant reduction in primary tumor growth, lung metastasis, and macrophage recruitment at the metastatic site. Importantly, we demonstrate that the inhibition of metastases by GATA3 results from the suppression of lysyl oxidase (LOX) expression, a metastasis promoting matrix protein that affects cell proliferation, cross-linking of extracellular collagen types, and establishment of the metastatic niche.
GATA3 inhibits lysyl oxidase-mediated metastases of human basal triple-negative breast cancer cells.
Cell line
View SamplesNeuroprotective effects of NDP-MSH. We have characterized the signaling down-stream of melanocortin-1 receptor ligation to identify pathways mediating neuroprotective effects of NDP-MSH using transcriptional profiling. In this data set we included the expression data obtained from mouse brain tissue (MOG-immunized wild-type or C57BL/6Je/e mice at disease maximum, d14 after immunization). The data were used to obtain differentially regulated genes in wild-type or C57BL/6Je/e mice upon systemic NDP-MSH treatment.
Melanocortin-1 receptor activation is neuroprotective in mouse models of neuroinflammatory disease.
Specimen part, Treatment
View SamplesEarly immature T-cell acute lymphoblastic leukemias (T-ALLs) account for about 5-10% of pediatric T-ALLs and are associated with poor prognosis. However, the genetic defects that drive the biology of these tumors remain largely unknown. Analysis of microarray gene expression signatures in adult T-ALL demonstrated a high prevalence of early immature leukemias and revealed a close relationship between these tumors and myeloid leukemias. Consistently, adult immature T- ALLs showed characteristic mutations in myeloid specific oncogenes and tumor suppressors including IDH1, IDH2, DNMT3A, FLT3 and NRAS. Moreover, we identified ETV6 mutations as a novel genetic lesion uniquely present in immature adult T-ALL. All together, our results demonstrate that early immature adult T- ALL represents a heterogeneous category of leukemias characterized by the presence of overlapping myeloid and T-ALL characteristics and highlight the role of ETV6 mutations in these tumors.
ETV6 mutations in early immature human T cell leukemias.
Specimen part
View SamplesMale Wistar rats weighing 90-120 g were acclimatized for one week and fed standard laboratory chow, at which time the animals were divided into two groups. Animals were then pair-fed for 8 weeks a regular laboratory chow and water ad libitum or Lieber-DeCarli diet (36% calories from ethanol). Control animals received the iso-caloric amount of dextrose to replace ethanol. After 8 weeks of differential feeding rats were euthanized, the pancreas immediately dissected and stored at -80?C until RNA isolation. RNA expression was analyzed using Affymetrix RAE230A gene chips
Long-term ethanol consumption alters pancreatic gene expression in rats: a possible connection to pancreatic injury.
No sample metadata fields
View SamplesPioneering studies within the last few years have allowed the in vitro expansion of tissue-specific adult stem cells from a variety of endoderm-derived organs, including the stomach, small intestine and colon. Here we derived organoids from mouse gallbladder tissue (gallbladder organoids), from mouse liver (including the extrahepatic biliary ducts and gallbladder; liver organoids) and from mouse small intestine tissue (intestinal organoids). RNA was prepared from these organoids and used to assay expression of 21,258 genes using Affymetrix gene expression arrays. RNA was also prepared from mouse gallbladder, liver and small intestine tissues and used to assay gene expression in these tissues. Finally, gallbladder organoids were induced to differentiate by removing R-spondin 1 and noggin from the culture media and subjected to gene expression array analysis.
R-spondin 1 and noggin facilitate expansion of resident stem cells from non-damaged gallbladders.
Specimen part
View SamplesProfiling of the transcriptome of FITChigh/FSCdim and FITCdim/FSChigh sub-populations. Three biological replicates were profiled for each cell type. Overall design: Profiling of the transcriptome of FITChigh/FSCdim and FITCdim/FSChigh sub-populations. Three biological replicates were profiled for each cell type.
An autofluorescence-based method for the isolation of highly purified ventricular cardiomyocytes.
Specimen part, Cell line, Subject
View SamplesNatural Killer (NK) cells are the first lymphocyte population to reconstitute early after non myelo-ablative and T cell-replete haploidentical hematopoietic stem cell transplantations (h-HSCTs) with post-transplant infusion of cyclophosphamide. The present study characterizes the transient and predominant expansion starting from the 2nd week after h-HSCT of a donor-derived unconventional subset of CD56dim/CD16neg (uCD56dim) NK cells expressing remarkable high levels of NKG2A and low levels of NKp46. Both transcription and phenotypic profiles indicated that uCD56dim NK cells are a distinct NK cell subpopulation with features of late differentiation, yet retaining proliferative capability and functional plasticity to generate conventional CD56bright/CD16pos NK cells in response to IL-15 plus IL-18. uCD56dim NK cells represent by far the largest NK cell subset detectable in the following 7 weeks after h-HSCT and they also express high levels of the activating receptors NKGD and NKp30 as well as of the lytic granules Granzyme-B and Perforin. Nonetheless, uCD56dim NK cells displayed a defective cytotoxicity that could be reversed by blocking the inhibitory receptor CD94/NKG2A. These data open new important perspectives to better understand the ontogenesis/homeostasis of human NK cells and to develop a novel immune-therapeutic approach by targeting the inhibitory NKG2A check point, thus enhancing NK cell alloreactivity early after h-HSCT.
The early expansion of anergic NKG2A<sup>pos</sup>/CD56<sup>dim</sup>/CD16<sup>neg</sup> natural killer represents a therapeutic target in haploidentical hematopoietic stem cell transplantation.
Specimen part
View SamplesTranslation and mRNA decay are intimately connected processes, and translational inhibition often precedes and stimulates transcript degradation. Here, we have focused on methods that allow determination of mRNA stability on a transcriptome-wide scale. We describe experimental and computational methods for the two most commonly used approaches (transcriptional inhibition and metabolic labeling), and we discuss associated caveats. Overall design: Metabolic labeling time courses (1, 2, 4, 8, 12, 24 hr) using 4SU were performed in HEK293.
Determining mRNA half-lives on a transcriptome-wide scale.
Treatment, Subject
View SamplesPlant BZR1-BAM transcription factors contain a -amylase (BAM)-like domain, characteristic of proteins involved in starch breakdown. The enzyme-derived domains appear to be non-catalytic, but determine the function of the Arabidopsis thaliana BZR1-BAMs (BAM7 and BAM8) during transcriptional initiation. Microarray experiments with plants overexpressing different mutant versions of the proteins show that only functional BZR1-BAM variants deregulate gene expression and cause leaf developmental abnormalities. Transcriptional changes caused by overexpression of the BZR1 domain alone indicate that the BAM domain increases selectivity for the preferred cis-regulatory element BBRE (BZR1-BAM Responsive Element).
The Enzyme-Like Domain of Arabidopsis Nuclear β-Amylases Is Critical for DNA Sequence Recognition and Transcriptional Activation.
Age, Specimen part, Treatment
View Samples