In this study the gene expression in cells infected with lytic and non-lytic variants of coxsackievirus B2 Ohio (CVB2O) were analyzed using next generation sequencing. This approach was selected with the purpose of elucidating the effects of lytic and non-lytic viruses on host cell transcription. Total RNA was extracted from infected cells, next generation sequencing was performed, and the reads were subsequently mapped against the human and CVB2O genomes. The amount of intracellular virions was measured, showing a relative amount of virus RNA 13 times higher in the cells infected with the lytic variant, vVP1Q164K, compared to cells infected by the non-lytic CVB2Owt. Furthermore, differential gene expression in the cells infected with the two viruses was identified and a number of genes singled out as possible keys to the answer of how the viruses interact with the host cells, resulting in lytic or non-lytic infections. Overall design: 4 samples, two samples of one strain, one sample of a different strain, and one control sample
The Transcriptome of Rhabdomyosarcoma Cells Infected with Cytolytic and Non-Cytolytic Variants of Coxsackievirus B2 Ohio-1.
No sample metadata fields
View SamplesThe crizotinibresistant ALKF1174L mutation arises de novo in neuroblastoma (NB) and is acquired in ALK translocation-driven cancers, lending impetus to the development of novel ALK inhibitors with different modes of action. The diaminopyrimidine TAE684 and its derivative ceritinib (LDK378), which are structurally distinct from crizotinib, are active against NB cells expressing ALKF1174L. Here we demonstrate acquired resistance to TAE684 and LDK378 in ALKF1174L-driven human NB cells that is linked to overexpression and activation of the AXL tyrosine kinase and epithelial-to-mesenchymal transition (EMT). AXL phosphorylation conferred TAE684 resistance to NB cells through upregulated ERK signaling. Inhibition of AXL partly rescued TAE684 resistance, resensitizing these cells to this compound. AXL activation in resistant cells was mediated through increased expression of the active form of its ligand, GAS6, which also served to stabilize the AXL protein. Although ectopic expression of AXL and TWIST2 individually in TAE684-sensitive parental cells led to the elevated expression of mesenchymal markers and invasive capacity, only AXL overexpression induced resistance to TAE684 as well. TAE684-resistant cells showed greater sensitivity to HSP90 inhibition than did their parental counterparts, with downregulation of AXL and AXL-mediated ERK signaling. Our studies indicate that aberrant AXL signaling and development of an EMT phenotype underlie resistance of ALKF1174L-driven NB cells to TAE684 and its derivatives. We suggest that the combination of ALK and AXL or HSP90 inhibitors be considered to delay the emergence of such resistance.
ALK inhibitor resistance in ALK(F1174L)-driven neuroblastoma is associated with AXL activation and induction of EMT.
Specimen part, Cell line
View SamplesGene expression from primary neuronal, astrocytic, oligodendrocytic and microglial cultures, as well as from RNA mixtures thereof.
Population-specific expression analysis (PSEA) reveals molecular changes in diseased brain.
Specimen part
View SamplesGene expression profiling of the medial (MGE), lateral (LGE) and caudal (CGE) ganglionic eminence, and cerebral cortex (CTX) at various embryonic stages (E12.5, E14 and E16).
Comprehensive spatiotemporal transcriptomic analyses of the ganglionic eminences demonstrate the uniqueness of its caudal subdivision.
Sex, Specimen part
View SamplesLEM Domain proteins are key components of the nuclear lamina. Mutations in LEM-D proteins cause dystrophic diseases associated with compromised adult stem cells, yet it remains unclear how LEM-D proteins support stem cell function. Studies described here use the homologue of the LEM-D protein emerin in Drosophila, Otefin (Ote) as a model to understand LEM-D protein function in adult stem cells. Loss of Ote causes female sterility due to a complex germline stem cell (GSC) phenotype that includes both an early block in germline differentiation followed by GSC death. In vivo cell cycle analysis revealed that ote mutant GSCs display a lengthened S phase.We find that loss of the DNA Damage Response (DDR) Chk2 is able to not only rescue the lengthened S phase, but also GSC death and the block in germline differentiation. Activation of detrimental checkpoint in absence of Ote is conserved in both male and female GSCs and surprisingly occurs independent of detectable canonical DDR triggers, including transposon de-repression and DNA damage. Two defects were found to occur upstream of Chk2 activation: nuclear lamina morphological defects and altered heterochromatin organization. Together, our data identify the primary cause for a compromised adult stem cell population in the absence of a LEM-D protein.
Nuclear lamina dysfunction triggers a germline stem cell checkpoint.
Specimen part
View SamplesWe conducted microarray experiments by comparing constitutive and inducible Flowering Locus T1 (FT1) and FT2 constructs with appropriate controls, followed by the identification of common targets of Pro35S:FT1 and ProHSP:FT1 or Pro35S:FT2 and ProHSP:FT2.
FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar.
Specimen part, Treatment
View SamplesThe aim of the study was to get insights into transcriptional alterations in bone marrow mesenchymal stromal cells derived from acute myeloid leukemia patients
Molecular alterations in bone marrow mesenchymal stromal cells derived from acute myeloid leukemia patients.
Disease
View SamplesGenome-wide gene expression analysis on tibialis anterior muscle from 2-month-old nebulin SH3 domain deleted (NebSH3) mice compared to wildtype.
The nebulin SH3 domain is dispensable for normal skeletal muscle structure but is required for effective active load bearing in mouse.
Sex, Age, Specimen part
View SamplesThe aim of present study was to describe the genetic pathways activated during the community acquired bacterial meningitis (BM) by using genome-wide RNA expression profiling combined with functional annotation of transcriptional changes. We included 21 patients with BM hospitalized in 2008. The control group consisted of 18 healthy subjects. The RNA was extracted from whole blood, globin mRNA was depleted and gene expression profiling was performed with GeneChip Human Gene 1.0 ST Arrays enabling the analysis of 28,869 genes. Gene expression profile data were analyzed using Bioconductor packages and Bayesian modeling. Functional annotation of the enriched gene sets was used to define changed genetic networks. We also analyzed if the gene expression profile depends on the clinical course and outcome. In order to verify the genechip results, we chose ten functionally relevant genes with high statistical significance (CD177, IL1R2, IL18R1, IL18RAP, OLFM4, TLR5, CPA3, FCER1A, IL5RA, IL7R) and performed quantitative real-time (qRT) PCR.We identified the significant differences at p values of <0.05 in 8569 genes and after False Discovery Rate (FDR) correction, total of 5500 genes remained significant at p value of <0.01. Quantitative RT-PCR confirmed differential expression for selected genes. Functional annotation and network analysis indicated that most of the genes were related to activation of humoral and cellular immune responses (enrichment score 43). Those changes were found in adults and in children with BM compared to the healthy controls. Gene expression profile didnt depend on the clinical outcome, but there was very strong influence by the type of the pathogen. This study demonstrates a strong functional genomic evidence of the over-active immune response during bacterial meningitis. This hyperactive response possibly explains the complicated clinical course of this disease.
Peripheral blood RNA gene expression profiling in patients with bacterial meningitis.
Specimen part
View SamplesTo identify gene expression changes associated with Crtc1 deficiency, we performed genome-wide transcriptome profile analyses by using mouse cDNA microarrays in the cortex of Crtc1/ and WT female mice
Involvement of the agmatinergic system in the depressive-like phenotype of the Crtc1 knockout mouse model of depression.
Sex, Specimen part
View Samples