During development, a polarized sheet of epidermal cells undergoes stratification and differentiation to produce the skin barrier. Through mechanisms poorly understood, the process involves adhesion and Notch signaling. To elucidate how epidermal embryogenesis is governed, we conditionally targeted transcription factor serum response factor (SRF), which has been shown to be essential for proper epidermal differentiation in vitro and in vivo. Seeking mechanism, we identified actomyosin-related genes as well-known SRF targets downregulated shortly after ablation. We show that this results in a diminished cortical actomyosin network which fails to regulate the transition of cells from the basal proliferative layer to the suprabasal differentiating layer resulting in an inability of cells to properly execute stratification and differentiation.
Developmental roles for Srf, cortical cytoskeleton and cell shape in epidermal spindle orientation.
No sample metadata fields
View SamplesPitx1, critical regulator of a limited hindlimb-specific gene network, targets the limb development program common to both fore- and hindlimbs in order to implement hindlimb-specific limb morphology. Overall design: The gene regulatory networks governing forelimb vs. hindlimb development in mouse were investigated using expressing profiling of morphologically stage-matched e10.5 forelimbs and e11.0 hindlimbs, ChIPseq of chromatin marks, and ChIPseq of limb-specific transcription factors Pitx1 and Tbx5. The makeup of the Pitx1-directed components of the hindlimb gene network were investigated using expression profiling of Pitx1 null hindlimbs at two stages (e11.0 and e11.5).
Regulatory integration of Hox factor activity with T-box factors in limb development.
Specimen part, Cell line, Subject
View SamplesThe combinatorial expression of the Hox genes along the body axes, referred to as the HOX code, is a major determinant of cell fate and plays a prevailing role in generating the animal body plan. In developing limb buds, the paralogous group 13 genes of the HoxA and HoxD clusters are essential for patterning the distal-most limb structures, the digits. Inactivation of HOXA13 and HOXD13 transcription factors (HOX13) leads to complete digit agenesis in mice, but how HOX13 regulate transcriptional outcomes and confer identity to the distal-most limb cells has remained elusive. Here we performed genome-wide profiling of HOX13 by chromatin immunoprecipitation and analyzed the transcriptome and chromatin state of wild type early and late-distal limb buds, as well as Hoxa13-/-;Hoxd13-/- compound mutant limb buds. Our results show that inactivation of HOX13 impairs the activation and repression of putative cis-regulatory modules specific to the late-distal limb cells. Loss of HOX13 also disrupts the specific, spatial patterning of gene expression along the proximal-distal axis of the developing limb buds. These results show that proper termination of the early limb transcriptional program and activation of the late-distal limb program are coordinated by the dual action of HOX13 on cis-regulatory modules. Overall design: Totla mRNAs from dissected distal parts of e11.5 forelimb, of wild-type as well as Hoxa13-/-;Hoxd13-/- mice
Regulatory integration of Hox factor activity with T-box factors in limb development.
Specimen part, Cell line, Subject
View SamplesThe objective of this study was to determine the gene expression changes mediated by the alpha6beta4 integrin using MDA-MB-435 breast carcinoma cell line under normal culturing conditions (10% FCS in DMEM).
Integrin alpha6beta4 controls the expression of genes associated with cell motility, invasion, and metastasis, including S100A4/metastasin.
No sample metadata fields
View SamplesRagweed challenge in Ragweed (RWE) sensitized animals generates Reactive oxygen species (ROS) in the airway epithelium and induces allergic airway inflammation. We want to study the genes induced by ROS generated by RWE. This goal can be achieved by comparing PBS challenge vs. RWE challenge.
Allergen challenge induces Ifng dependent GTPases in the lungs as part of a Th1 transcriptome response in a murine model of allergic asthma.
No sample metadata fields
View SamplesThis experiment is designed to study the effects to HMPV on A549 over time
Identification of human metapneumovirus-induced gene networks in airway epithelial cells by microarray analysis.
No sample metadata fields
View SamplesTo identify a cohort of rhythmically expressed genes in the murine Distal Colon,microarrays were used to measure gene expression over a 24-hour light/dark cycle.The rhythmic transcripts were classified according to expression patterns, functions and association with physiological and pathophysiological processes of the colon including motility, colorectal cancer formation and inflammatory bowel disease.
Transcriptional profiling of mRNA expression in the mouse distal colon.
No sample metadata fields
View SamplesAPE1 regulates a vast majority of genes by acting as a transcriptional co-activator or as a co-repressor. It is overexpressed in diverse cancer tissues and is associated with their drug resistance. It is essential for cell proliferation. APE1 is post-translationally acetylated by HAT p300 at its N-terminal Lys 6 and 7 residues. We examined APE1 and its acetylation-dependent gene expression profile of lung cancer cells which would contribute to sustained proliferation of lung cancer cells.
Regulation of limited N-terminal proteolysis of APE1 in tumor via acetylation and its role in cell proliferation.
Cell line
View SamplesThe airway epithelial cell plays a central role in coordinating pulmonary response to injury and inflammation. Here, transforming growth factor-b (TGFb) activates gene expression programs to induce stem cell-like properties, inhibit expression of differentiated epithelial adhesion proteins and express mesenchymal contractile proteins. This process is known as epithelial mesenchymal transition (EMT); although much is known about the role of EMT in cellular metastasis in an oncogene-transformed cell, less is known about Type II EMT, that occurring in normal epithelial cells. In this study, we applied next generation sequencing (RNA-seq) in primary human airway epithelial cells to understand the gene program controlling Type II EMT and how cytokine-induced inflammation modifies it. Generalized linear modeling was performed on a two-factor RNA-seq experiment of 6 treatments of telomerase immortalized human small airway epithelial cells (3 replicates). Using a stringent cut-off, we identified 3,478 differentially expressed genes (DEGs) in response to EMT. Unbiased transcription factor enrichment analysis identified three clusters of EMT regulators, one including SMADs/TP63 and another NF-kB/RelA. Surprisingly, we also observed 527 of the EMT DEGs were also regulated by the TNF-NF-kB/RelA pathway. This Type II EMT program was compared to Type III EMT in TGFb stimulated A549 alveolar lung cancer cells, revealing significant functional differences. Moreover, we observe that Type II EMT modifies the outcome of the TNF program, reducing IFN signaling and enhancing integrin signaling. We confirmed experimentally that TGFb-induced the NF-kB/RelA pathway by observing a 2-fold change in NF-kB/RelA nuclear translocation. A small molecule IKK inhibitor blocked TGFb-induced core transcription factor (SNAIL1, ZEB1 and Twist1) and mesenchymal gene (FN1 and VIM) expression. These data indicate that NF-kB/RelA controls a SMAD-independent gene network whose regulation is required for initiation of Type II EMT. Type II EMT dramatically affects the induction and kinetics of TNF-dependent gene networks. Overall design: A human small airway epithelial cell line was treated with TGF-Beta to induce the epithelial to mesenchymal transition. TGF-Beta treated and untreated cells were further treated with TNF-alpha for 1 and 12 hours. Three replicates for each treatment and untreated controls were performed for a total of 18 samples.
Analysis of the TGFβ-induced program in primary airway epithelial cells shows essential role of NF-κB/RelA signaling network in type II epithelial mesenchymal transition.
No sample metadata fields
View SamplesAdherence of pathogenic Escherichia coli strains to intestinal epithelia is essential for infection. For enterohemorrhagic E. coli (EHEC) serotype O157:H7, we have previously demonstrated that multiple factors govern this pathogens adherence to HeLa cells (39). One of these factors is CadA, a lysine decarboxylase, and this protein has been proposed to negatively regulate virulence in several enteric pathogens. In the case of EHEC strains, CadA modulates expression of the intimin, an outer membrane adhesin involved in pathogenesis. Here, we experimentally inactivated cadA in O157:H7 strain 86-24 to investigate the role of this gene in EHEC adhesion to tissue culture monolayers, global gene expression patterns, and colonization of the infant rabbit intestine. As expected, the cadA mutant did not possess lysine decarboxylation activity and was hyper-adherent to tissue-culture cells. Adherence of the cadA mutant was nearly 2-fold greater than that of the wt and complementation of the cadA defect reduced adherence back to wt levels. Furthermore, the cadA mutant affected the expression of intimin protein. Disruption of the eae gene (encoding the intimin protein) in the cadA mutant significantly reduced its adherence to tissue-culture cells. However, adherence of the cadA eae double mutant was greater than that of an 86-24 eae mutant, suggesting that the enhanced adherence of the cadA mutant is not entirely attributable to enhanced expression of intimin in this background. Gene array analysis revealed that the cadA mutation significantly altered EHEC gene expression patterns; expression of 1332 genes was down-regulated and 132 genes up-regulated in the mutant compared to the wild type strain. Interestingly, the gene expression variation shows an EHEC-biased gene alteration including intergenic regions. Two putative adhesins: flagella and F9 fimbriae were up-regulated in the cadA mutant, suggestive of their association with adherence in absence of the Cad regulatory mechanism. Remarkably, in the infant rabbit model, the cadA mutant out-competed the wild type strain in the ileum but not in the cecum or mid-colon, raising the possibility that CadA negatively regulates EHEC pathogenicity in a tissue-specific fashion.
CadA negatively regulates Escherichia coli O157:H7 adherence and intestinal colonization.
No sample metadata fields
View Samples