It has been recently shown that N-ras plays a preferential role in immune cell development and function; specifically: N-ras, but not H-ras or K-ras, could be activated at and signal from the Golgi membrane of immune cells following a low level TCR stimulus. The goal of our studies was to test the hypothesis that N-ras and H-ras played distinct roles in immune cells at the level of the transcriptome.
In TCR-stimulated T-cells, N-ras regulates specific genes and signal transduction pathways.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
An Ancient Fecundability-Associated Polymorphism Creates a GATA2 Binding Site in a Distal Enhancer of HLA-F.
Sex, Specimen part
View SamplesSystemic administration of -adrenoceptor (-AR) agonists has been found to induce skeletal muscle hypertrophy and significant metabolic changes. In the context of energy homeostasis, the importance of -AR signaling has been highlighted by the inability of 13-AR-deficient mice to regulate energy expenditure and susceptibility to diet induced obesity. However, the molecular pathways and gene expression changes that initiate and maintain these phenotypic modulations are poorly understood. Therefore, the aim of this study was to identify differential changes in gene expression in murine skeletal muscle associated with systemic acute administration of the 2-AR agonist formoterol. Skeletal muscle gene expression (from murine tibialis anterior) was profiled at both 1 and 4 hours following systemic administration of the 2-AR agonist formoterol, using 46K Illumina(R) Sentrix BeadArrays. Illumina expression profiling revealed significant expression changes in genes associated with skeletal muscle hypertrophy, myoblast differentiation, metabolism, circadian rhythm, transcription, histones, and oxidative stress.
Expression profiling of skeletal muscle following acute and chronic beta2-adrenergic stimulation: implications for hypertrophy, metabolism and circadian rhythm.
Treatment
View SamplesWe undertook a survey of gene expression changes in primary microglial cultures with and without neurovirulent (FrCasE) and non-neurovirulent (Fr57E) virus infection to identify physiological changes that could be relevant to the induction of spongiform neurodegeneration. These gene expression analyses were performed using Affymetrix 430A mouse GeneChips (5 chips for each of the three experimental conditions, representing over 14,000 murine genes and ESTs. RNA from 5 separate microglial culture preparations were analyzed for Control (mock infected), Fr57E-, and FrCasE-infected microglia. Present/absent calls were based on MicroArray Suite 5.0 from Affymetrix. Affymetrix CEL files were analyzed using dChip software after normalization of the data between all 15 arrays. Statistical analyses were performed using ANOVA.
Gene expression profiling of microglia infected by a highly neurovirulent murine leukemia virus: implications for neuropathogenesis.
Specimen part
View SamplesConsumption of a protein containing meal by a fasted animal promotes protein accretion in skeletal muscle, in part through leucine stimulation of protein synthesis and indirectly through repression of protein degradation mediated by its metabolite, a-ketoisocaproate. Mice lacking the mitochondrial branched-chain aminotransferase (BCATm/Bcat2), that interconverts leucine and a-ketoisocaproate, exhibit elevated protein turnover. Here, the transcriptomes of gastrocnemius muscle from BCATm knockout (KO) and wildtype mice were compared using Next Generation RNA-Sequencing (RNA-Seq) to identify potential adaptations associated with their persistently altered nutrient signaling. Statistically significant changes in the abundance of 1486/~39,010 genes were identified. Bioinformatics analysis of the RNA-Seq data indicated that pathways involved in protein synthesis (eIF2, mTOR, eIF4 and p70S6K pathways including 40S and 60S ribosomal proteins), protein breakdown (e.g., ubiquitin mediated), and muscle degeneration (apoptosis, atrophy, myopathy and cell death) were up-regulated. Also in agreement with our previous observations, the abundance of mRNAs associated with reduced body size, glycemia, plasma insulin, and lipid signaling pathways were observed in BCATm KO mice. Consistently, genes encoding anaerobic and/or oxidative metabolism of carbohydrate, fatty acids and BCAAs were modestly but systematically reduced. Although there was no indication that muscle fiber type was different between KO and wildtype mice, a difference in the abundance of mRNAs associated with a muscular dystrophy phenotype was observed, consistent with the published exercise intolerance of these mice. The results suggest transcriptional adaptations occur in BCATm KO mice that along with altered nutrient signaling may contribute to their previously reported protein turnover, metabolic and exercise phenotypes. Overall design: Comparison of wildtype and BCATm KO gastrocnemius biological replicates
Global deletion of BCATm increases expression of skeletal muscle genes associated with protein turnover.
No sample metadata fields
View SamplesThe purpose of this study was to examined the acute actions of the second generation antipsychotic (SGA), olanzapine, on skeletal muscle (gastrocnemius) of Sprague Dawley Rats. SGAs cause metabolic side effects including leading to metabolic inflexibility, hyperglycemia, adiposity and diabetes. These effects are preceded by glucose intolerance and increased FFA flux and metabolism in peripheral tissues. Skeletal muscle is a likely target of glucose intolerance, therefore understanding how olanzapine affects the skeletal muscle transcriptome could elucidate approaches for mitigating these side effects. Male Sprague-Dawley rats freely fed on normal chow with comparable body weights (vehicle: 373±9g, olanzapine: 388±11g, p=0.34) were infused with vehicle or olanzapine for 24h using a dosing regimen leading to mild hyperglycemia (vehicle, 98±2mg/dl; olanzapine 127±4mg/dl, p=0.0023). For the olanzapine group, the venous catheter was attached to a syringe pump (Model NE-300) filled with olanzapine (Dr. Reddy’s Laboratories Ltd, Hyderabad, India) in sterile saline (infusion: 1mg/100g BW loading dose for 0.5h and then 0.04mg/100g/h continuously for 23.5h). Gastrocnemius was then surgically removed under isoflurane anesthesia (carried with 100% O2), and frozen between two aluminum blocks cooled to the temperature of liquid nitrogen and then stored at -80oC until RNA was isolated. With anesthesia gas flow continuing, the animals were euthanized by cutting the diaphram and removing the heart. The mRNA was isolated from from these muscles and used for RNA-Seq followed by alignment of the data with the rat genome assembly 5.0. To determine significant differences in FPKM values between control and olanzapine groups, the DEGexp function of the DEGseq 1.18.0 R package was used with the Likelihood Ratio Test (LRT) and default parameters. In the uploaded excel file, P values with p<0.05 and p<0.001 are shown for each row in different columns indicated by the number 1. The value 0 indicates the row is not significantly different. Overall design: Comparison of vehicle (n=3) and olanzapine infused (n=3) rats.
RNA sequencing reveals a slow to fast muscle fiber type transition after olanzapine infusion in rats.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Polo-Like Kinase 3 Appears Dispensable for Normal Retinal Development Despite Robust Embryonic Expression.
Specimen part
View SamplesExposure to ultraviolet (UV) irradiation is the major cause of nonmelanoma skin cancer, the most common form of cancer in the United States. UV irradiation has a variety of effects on the skin associated with carcinogenesis, including DNA damage and effects on signal transduction. The alterations in signaling caused by UV regulate inflammation, cell proliferation, and apoptosis. UV also activates the orphan receptor tyrosine kinase and proto-oncogene Erbb2 (HER2/neu). In this study, we demonstrate that the UV-induced activation of Erbb2 regulates the response of the skin to UV. Inhibition or knockdown of Erbb2 before UV irradiation suppressed cell proliferation, cell survival, and inflammation after UV. In addition, Erbb2 was necessary for the UV-induced expression of numerous proinflammatory genes that are regulated by the transcription factors nuclear factor-kappaB and Comp1, including interleukin-1beta, prostaglandin-endoperoxidase synthase 2 (Cyclooxygenase-2), and multiple chemokines. These results reveal the influence of Erbb2 on the UV response and suggest a role for Erbb2 in UV-induced pathologies such as skin cancer.
Erbb2 regulates inflammation and proliferation in the skin after ultraviolet irradiation.
No sample metadata fields
View SamplesThese data investigate the transcriptomic differences in the whole retinas of mice resulting from loss of Polo-like Kinase 3 (Plk3) over various stages of development, including adulthood, postnatal day (P)7, and P0.
Polo-Like Kinase 3 Appears Dispensable for Normal Retinal Development Despite Robust Embryonic Expression.
Specimen part
View SamplesWe sequenced mRNA from a total of 12 samples (6 different cell types, each with two biological replicates) to infer the relationship among those cell types Overall design: Examination of mRNA levels in six different human cell types grown in culture with two biological replicates for each cell type
Cell-type phylogenetics and the origin of endometrial stromal cells.
No sample metadata fields
View Samples