Two human acute lymphoblastic leukemia cell lines (Molt-4 and CCRF-CEM) were treated with direct (A-769662) and indirect (AICAR) AMPK activators. Molt-4 and CCRF-CEM cells were obtained from ATCC (CRL-1582 and CCL-119). Control samples were used for the analysis of metabolic differences between cell lines. Therefore the data was analyzed in combination with, metabolomic data, and the genome-scale reconstruction of human metabolism. For experiments cells were grown in serum-free medium containing DMSO (0.67%) at a cell concentration of 5 x 105 cells/mL.
Prediction of intracellular metabolic states from extracellular metabolomic data.
Cell line, Treatment
View SamplesIn this experiment we compared total RNA from two commonly used choriocarcinoma cell lines, JEG3 and BeWo, to identify differentially expressed transcripts.
Microarray analysis of BeWo and JEG3 trophoblast cell lines: identification of differentially expressed transcripts.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Restriction of intestinal stem cell expansion and the regenerative response by YAP.
Specimen part, Treatment
View SamplesRSpondin1 adenovirus was administered to mice and intestine was isolated for expression analysis 1 week later.
Restriction of intestinal stem cell expansion and the regenerative response by YAP.
Specimen part, Treatment
View SamplesRice (Oryza sativa L.) seeds can germinate in complete absence of oxygen. Under anoxia, the rice coleoptile elongates, reaching a length greater than that of the aerobic one. In this series, we compare the transcriptome of rice coleoptiles grown under aerobic and anaerobic conditions.
Transcript profiling of the anoxic rice coleoptile.
No sample metadata fields
View SamplesTo investigate the role of NKX3.1 in prostate differentiation, we employed transcriptome analysis of mouse seminal vesicle (from 15-month-old Nkx3.1+/+ mice); mouse prostate (from 4-month-old Nkx3.1+/+ and Nkx3.1-/- mice); human prostate cells (RWPE1 cells engineered with empty vector (altered pTRIPZ), NKX3.1 wild type over-expression, and NKX3.1 (T164A) mutant over-expression); and tissue recombinants (generated from combining engineered mouse epithelial cells (seminal vesicle epithelial cells or prostate epithelial cells from 2-month-old mice) and rat UGS mesenchymal cells). Mouse tissue or human cells were snap frozen for subsequent molecular analysis.
Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation.
Age, Specimen part, Cell line
View SamplesAnalysis of transcriptome of tissue recombinants (mouse seminal vesicle epithelial [SVE] cells or prostate epithelial [PE] cells, and rat urogenital sinus [UGS] mesenchymal cells) grown under the kidney capsule in athymic nude mice for 3 months. Overall design: Total RNA obtained from tissue recombinants generated from combining engineered mouse epithelial cells (SVE or PE from 2-month-old C57Bl/6J mice) and rat UGS mesenchymal cells. Tissue recombinants were harvested and processed for RNA isolation and transcriptome analysis using the RNeasy kit (Qiagen).
Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation.
Age, Specimen part, Subject
View SamplesAnalysis of transcriptome of human RWPE1 cells over-expressing wild type NKX3.1 and mutant NKX3.1 (T164A). Overall design: Total RNA obtained from RWPE1 cells engineered with empty vector (altered pTRIPZ), NKX3.1 wild type over-expression, and NKX3.1 (T164A) mutant over-expression. Engineered RWPE1 cells were harvested and processed for RNA isolation and transcriptome analysis using the MagMAX RNA isolation kit (Ambion).
Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation.
Cell line, Subject
View SamplesAnalysis of transcriptome of prostate tissue from 4-month-old Nkx3.1 +/+ and Nkx3.1 -/- mice. Overall design: Total RNA obtained from prostate tissues from 4-month-old Nkx3.1 +/+ and Nkx3.1 -/- mice. Prostate tissues were harvested and processed for RNA isolation and transcriptome analysis using the MagMAX RNA isolation kit (Ambion).
Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation.
Age, Specimen part, Subject
View SamplesAnalysis of transcriptome of seminal vesicle from 15-month-old Nkx3.1+/+ mice.
Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation.
Age, Specimen part
View Samples