In this experiment we compared total RNA from two commonly used choriocarcinoma cell lines, JEG3 and BeWo, to identify differentially expressed transcripts.
Microarray analysis of BeWo and JEG3 trophoblast cell lines: identification of differentially expressed transcripts.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Restriction of intestinal stem cell expansion and the regenerative response by YAP.
Specimen part, Treatment
View SamplesRSpondin1 adenovirus was administered to mice and intestine was isolated for expression analysis 1 week later.
Restriction of intestinal stem cell expansion and the regenerative response by YAP.
Specimen part, Treatment
View SamplesRice (Oryza sativa L.) seeds can germinate in complete absence of oxygen. Under anoxia, the rice coleoptile elongates, reaching a length greater than that of the aerobic one. In this series, we compare the transcriptome of rice coleoptiles grown under aerobic and anaerobic conditions.
Transcript profiling of the anoxic rice coleoptile.
No sample metadata fields
View SamplesDietary restriction (DR) extends lifespan in a wide variety of species, yet the underlying mechanisms are not well understood. Here we show that the Caenorhabditis elegans HNF4a-related nuclear hormone receptor NHR-62 is required for metabolic and physiologic responses associated with DR-induced longevity. nhr-62 mediates the longevity of eat-2 mutants, a genetic mimetic of dietary restriction, and blunts the longevity response of DR induced by bacterial food dilution at low nutrient levels. Metabolic changes associated with DR, including decreased Oil Red O staining, decreased triglyceride levels, and increased autophagy are partly reversed by mutation of nhr-62. Additionally, the DR fatty acid profile is altered in nhr-62mutants. Expression profiles reveal that several hundred genes induced by DR depend on the activity of NHR-62, including a putative lipase required for the DR response. This study provides critical evidence of nuclear hormone receptor regulation of the DR longevity response, suggesting hormonal and metabolic control of life span. Overall design: Young adult worms before bearing eggs inside were collected. N2 serves as the control of wild type. 3 biological replicates included in this experiment.
Dietary restriction induced longevity is mediated by nuclear receptor NHR-62 in Caenorhabditis elegans.
Subject
View SamplesHere we investigated the effect of stable knock-down of the NAA-catabolizing enzyme, Aspartoacylase (Aspa), on global gene expression in a brown adipocyte cell line.
N-acetylaspartate catabolism determines cytosolic acetyl-CoA levels and histone acetylation in brown adipocytes.
No sample metadata fields
View SamplesTo investigate the role of NKX3.1 in prostate differentiation, we employed transcriptome analysis of mouse seminal vesicle (from 15-month-old Nkx3.1+/+ mice); mouse prostate (from 4-month-old Nkx3.1+/+ and Nkx3.1-/- mice); human prostate cells (RWPE1 cells engineered with empty vector (altered pTRIPZ), NKX3.1 wild type over-expression, and NKX3.1 (T164A) mutant over-expression); and tissue recombinants (generated from combining engineered mouse epithelial cells (seminal vesicle epithelial cells or prostate epithelial cells from 2-month-old mice) and rat UGS mesenchymal cells). Mouse tissue or human cells were snap frozen for subsequent molecular analysis.
Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation.
Age, Specimen part, Cell line
View SamplesAnalysis of transcriptome of tissue recombinants (mouse seminal vesicle epithelial [SVE] cells or prostate epithelial [PE] cells, and rat urogenital sinus [UGS] mesenchymal cells) grown under the kidney capsule in athymic nude mice for 3 months. Overall design: Total RNA obtained from tissue recombinants generated from combining engineered mouse epithelial cells (SVE or PE from 2-month-old C57Bl/6J mice) and rat UGS mesenchymal cells. Tissue recombinants were harvested and processed for RNA isolation and transcriptome analysis using the RNeasy kit (Qiagen).
Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation.
Age, Specimen part, Subject
View SamplesAnalysis of transcriptome of human RWPE1 cells over-expressing wild type NKX3.1 and mutant NKX3.1 (T164A). Overall design: Total RNA obtained from RWPE1 cells engineered with empty vector (altered pTRIPZ), NKX3.1 wild type over-expression, and NKX3.1 (T164A) mutant over-expression. Engineered RWPE1 cells were harvested and processed for RNA isolation and transcriptome analysis using the MagMAX RNA isolation kit (Ambion).
Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation.
Cell line, Subject
View SamplesAnalysis of transcriptome of prostate tissue from 4-month-old Nkx3.1 +/+ and Nkx3.1 -/- mice. Overall design: Total RNA obtained from prostate tissues from 4-month-old Nkx3.1 +/+ and Nkx3.1 -/- mice. Prostate tissues were harvested and processed for RNA isolation and transcriptome analysis using the MagMAX RNA isolation kit (Ambion).
Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation.
Age, Specimen part, Subject
View Samples