This work is part of the paper: Generation of a murine hepatic angiosarcoma cell line and reproducible mouse tumor model, Rothweiler S et al, Laboratory Investigation, 2014
Generation of a murine hepatic angiosarcoma cell line and reproducible mouse tumor model.
No sample metadata fields
View SamplesHepatocellular carcinoma (HCC) is a heterogeneous disease, and despite considerable research efforts, no molecular classification of HCC has been introduced in clinical practice. The existing molecular classification systems were established using resected tumors, which introduces a selection bias towards patients without liver cirrhosis and with early stage HCCs. So far, these classification systems have not been validated in liver biopsy specimens from tumors diagnosed at intermediate and late stages. We generated and analyzed expression profiles from 60 HCC biopsies from an unselected patient population with all tumor stages. Unbiased clustering identified 3 HCC classes. Class membership correlated with survival, tumor size, and with Edmondson and BCLC stage. Most biopsy specimens could be assigned to the classes of published classification systems, demonstrating that gene expression profiles obtained from patients with early stage disease are preserved in all stages of HCC. When a reference set of healthy liver samples was integrated in the analysis, we observed that the differentially regulated genes up- or down-regulated in a given class relative to other classes were actually dysregulated in the same direction in all HCCs, with quantitative rather than qualitative differences between the molecular subclasses. With the exception of a subset of samples with a definitive -catenin gene signature, biological pathway analysis could not identify class specific pathways reflecting the activation of distinct oncogenic programs. Our results suggest that gene expression profiling of HCC biopsies has limited potential to direct therapies that target specific driver pathways, but can identify subgroups of patients with different prognosis.
Gene expression analysis of biopsy samples reveals critical limitations of transcriptome-based molecular classifications of hepatocellular carcinoma.
Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Interferon-γ-stimulated genes, but not USP18, are expressed in livers of patients with acute hepatitis C.
Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesApproximately 50% of patients with chronic hepatitis C (CHC) have a sustained virologic response (SVR) to treatment with pegylated interferon (pegINF)- and ribavirin. Non-response to treatment is associated with constitutively increased expression of IFN-stimulated genes (ISGs) in the liver. Treatment of patients with acute hepatitis C (AHC) is more effective, with SVR rates >90%. We investigated mechanisms of the different responses of patients with CHC and AHC to pegIFN- therapy. We analyzed IFN signaling and ISG expression in liver samples from patients with acute hepatitis C (AHC), patients with chronic hepatitis (CHC), and individuals without hepatitis C (controls) using microarray, immunohistochemical, and protein analyses. Findings were compared with those from primary human hepatocytes stimulated with IFN- or IFN-, as reference sets. Expression levels of 100s of genes, primarily those regulated by IFN-, were altered in liver samples from patients with AHC compared with controls. Expression of IFN-stimulated genes was induced in liver samples from patients with AHC, whereas expression of IFN-stimulated genes was induced in samples from patients with CHC. In an expression analysis of negative regulators of IFN- signaling, we did not observe differences in expression of SOCS1 or SOCS3 between liver samples from patients with AHC and those with CHC. However, USP18 (another negative regulator of IFN- signaling), was upregulated in liver samples of patients with CHC that did not respond to therapy, but not in AHC. In conclusion, differences in expression of ISGs might account for the greater response of patients with AHC, compared to those with CHC, to treatment with pegINF- and ribavirin. Specifically, USP18 is upregulated in liver samples of patients with CHC that do not respond to therapy, but not in patients with AHC.
Interferon-γ-stimulated genes, but not USP18, are expressed in livers of patients with acute hepatitis C.
Specimen part, Treatment, Subject, Time
View SamplesApproximately 50% of patients with chronic hepatitis C (CHC) have a sustained virologic response (SVR) to treatment with pegylated interferon (pegINF)- and ribavirin. Non-response to treatment is associated with constitutively increased expression of IFN-stimulated genes (ISGs) in the liver. Treatment of patients with acute hepatitis C (AHC) is more effective, with SVR rates >90%. We investigated mechanisms of the different responses of patients with CHC and AHC to pegIFN- therapy. We analyzed IFN signaling and ISG expression in liver samples from patients with acute hepatitis C (AHC), patients with chronic hepatitis (CHC), and individuals without hepatitis C (controls) using microarray, immunohistochemical, and protein analyses. Findings were compared with those from primary human hepatocytes stimulated with IFN- or IFN-, as reference sets. Expression levels of 100s of genes, primarily those regulated by IFN-, were altered in liver samples from patients with AHC compared with controls. Expression of IFN-stimulated genes was induced in liver samples from patients with AHC, whereas expression of IFN-stimulated genes was induced in samples from patients with CHC. In an expression analysis of negative regulators of IFN- signaling, we did not observe differences in expression of SOCS1 or SOCS3 between liver samples from patients with AHC and those with CHC. However, USP18 (another negative regulator of IFN- signaling), was upregulated in liver samples of patients with CHC that did not respond to therapy, but not in AHC. In conclusion, differences in expression of ISGs might account for the greater response of patients with AHC, compared to those with CHC, to treatment with pegINF- and ribavirin. Specifically, USP18 is upregulated in liver samples of patients with CHC that do not respond to therapy, but not in patients with AHC.
Interferon-γ-stimulated genes, but not USP18, are expressed in livers of patients with acute hepatitis C.
Specimen part, Disease, Disease stage
View SamplesAfrican American men are disproportionately affected by both vitamin D deficiency and increased risk of prostate cancer.
Prostatic compensation of the vitamin D axis in African American men.
Specimen part
View SamplesIn this study we aimed to identify a baseline intrahepatic transcriptional signature associated with response in chronic hepatitis B patients treated with peginterferon-alfa-2a (peg-IFN) and adefovir.
An intrahepatic transcriptional signature of enhanced immune activity predicts response to peginterferon in chronic hepatitis B.
Specimen part, Disease, Disease stage
View SamplesPegylated interferon- (pegIFN-) has replaced un-modified recombinant IFN- for the treatment of chronic viral hepatitis because of its superior anti-viral efficacy that is generally attributed to improved pharmacokinetic properties. However, the pharmacodynamic effects of pegIFN- in the liver have not been studied. We analyzed pegIFN- induced signaling and gene regulation in paired liver biopsies obtained before treatment and during the first week after injection of pegIFN- in 18 patients. Despite sustained high serum concentrations of pegIFN- over the entire one-week dosing interval, IFN- signaling through the Jak-STAT pathway occurs only during the first day. PegIFN- induces hundreds of genes that can be classified into 4 clusters based on different temporal expression profiles. In all clusters, gene transcription is mainly driven by IFN stimulated gene factor 3 (ISGF3). IFN induced secondary transcription factors do not cause additional waves of gene expression. We could not confirm a role of un-phosphorylated STAT1 in prolonging IFN- induced gene transcription. Collectively, our results reveal that the major effects of pegIFN- in the liver are caused by an early and transient activation of ISGF3. Prolonging the serum half-life of IFN- does not necessarily improve its pharmacodynamic properties.
Pegylated IFN-α regulates hepatic gene expression through transient Jak/STAT activation.
Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through TEAD transcription factors.
Treatment
View SamplesThe YAP pathway in regulating organ size by integrating external signals to control the expression of genes involved in cell proliferation. YAP is known to be involved in tumorigenesis in several tissues, yet its role in cholangiocarcinoma is not established
YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through TEAD transcription factors.
Cell line
View Samples