Coupling immunity and development is essential to ensure survival despite changing internal conditions in the organism. The metamorphosis of the fruit fly represents a striking example of drastic and systemic physiological changes that need to be integrated with the innate immune system. However, the mechanisms that coordinate development and immune cell activity in the transition from larva to adult in Drosophila remain to elucidate. The steroid hormone ecdysone is known to act as a key coordinator of metamorphosis. This hormone activates a nuclear receptor, the Ecdysone Receptor (EcR), which acts as a heterodimer with its partner Ultraspiracle (USP). Together, they activate the transcription of primary response genes, which in turn activate the transcription of a battery of late response genes. We have revealed that regulation of macrophage-like cells (hemocytes) by the steroid hormone ecdysone is essential for an effective innate immune response over metamorphosis. We have shown that in response to ecdysone signalling, hemocytes rapidly up regulate actin dynamics, motility and phagocytosis of apoptotic corpses, and acquire the ability to chemotax to damaged epithelia. Most importantly, individuals lacking ecdysone-activated hemocytes are defective in bacterial phagocytosis and are fatally susceptible to infection by bacteria ingested at larval stages, despite the normal systemic production of antimicrobial peptides. This decrease in survival is comparable to the one observed in pupae lacking immune cells altogether, indicating that ecdysone-regulation is essential to hemocyte immune functions and survival after infection.
Steroid hormone signaling is essential to regulate innate immune cells and fight bacterial infection in Drosophila.
Specimen part
View Samplesp63 mutations have been associated with several human hereditary disorders characterized by ectodermal dysplasia such as EEC syndrome, ADULT syndrome and AEC syndrome . The location and functional effects of the mutations that underlie these syndromes reveal a striking genotype-phenotype correlation. Unlike EEC and ADULT that result from missense mutations in the DNA-binding domain of p63, AEC is solely caused by missense mutations in the SAM domain of p63. We report a study on the TAp63a isoform, the first to be expressed during development of the embryonic epithelia, and on its naturally occurring Q540L mutant derived from an AEC patient. To assess the effects of the Q540L mutation, we generated stable cell lines expressing TAp63a wt, DeltaNp63 alpha or the TAp63 alpha-Q540L mutant protein and used them to systematically compare the cell growth regulatory activity of the mutant and wt p63 proteins and to generate, by microarray analysis, a comprehensive profile of differential gene expression. We found that the Q540L substitution impairs the transcriptional activity of TAp63a and causes misregulation of genes involved in the control of cell growth and epidermal differentiation.
The Hay Wells syndrome-derived TAp63alphaQ540L mutant has impaired transcriptional and cell growth regulatory activity.
No sample metadata fields
View SamplesThe source of aldosterone in 30 to 40 % of patients with primary hyperaldosteronism (PA) is unilateral aldosterone-producing adenoma (APA). The mechanisms causing elevated aldosterone production in APA are unknown. Herein, we examined expression of G-protein coupled receptors (GPCR) in APA and demonstrate that compared to normal adrenals there is a general elevation of certain GPCR in many APA and/or ectopic expression of GPCR in others. RNA samples from normal adrenals (n = 5), APAs (n = 10), and cortisol-producing adenomas (CPAs) (n=13) were used on 15 genomic expression arrays, each of which included 223 GPCR transcripts presented in at least one out of 15 of the independent microarrays. The array results were confirmed using real-time RT-PCR (qPCR). Four GPCR transcripts exhibited a statistically significant increase that was greater than 3-fold compared to normal adrenals, suggesting a general increase in expression compared to normal adrenal glands. Four GPCR transcripts exhibited a greater than 15-fold increase of expression in one or more of the APA samples compared to normal adrenals. qPCR analysis confirmed array data and found the receptors with the highest fold increase in APA expression to be luteinizing hormone receptor (LH-R), serotonin receptor 4 (HTR4), gonadotropin-releasing hormone receptor (GnRHR), glutamate receptor metabotropic 3 (GRM3), endothelin receptor type B-like protein (GPR37), and ACTH receptor (MC2R). There are also sporadic increased expressions of these genes in the CPAs. Together, these findings suggest a potential role of altered GPCR expression in many cases of PA and provide candidate GPCR for further study.
G-protein-coupled receptors in aldosterone-producing adenomas: a potential cause of hyperaldosteronism.
No sample metadata fields
View SamplesOchratoxin A gene expression profiling in liver and kidney, with time points of exposure from 7 days to 12 motnhs
A toxicogenomics approach to identify new plausible epigenetic mechanisms of ochratoxin a carcinogenicity in rat.
No sample metadata fields
View SamplesQuantitative Analysis of cortical transcriptomes through Next Generation Sequencing (RNA-Seq) from wild-type mice, wild-type mice treated with IL1b (200 ng/mouse, 14h), IL-1R8-/- mice and IL-1R8-/- mice treated with IL1b antagonist Anakinra (25 mg/kg per day for 3 consecutive days, i.p. administration). mRNA profiles of cortical tissue from adult wild-type mice, wild-type mice treated with IL1b (200 ng/kg, 14h), IL-1R8-/- mice (Garlanda et al., 2004), and IL-1R8-/- mice treated with Anakinra (25 mg/kg per day for 3 consecutive days, i.p. administration) were generated by next-generation sequencing (RNA-seq) using Illumina HiSeq 2500 apparatus in paired-end configuration (2x125bp). Each condition was assessed in triplicate (12 mRNA-seq libraries) and, to reduce biological variability, each mRNA library was generated from pooled total RNA isolated from cortical tissue of 3 individual mice. In total, 9 mice per condition were used. Libraries were stranded and multiplexed. To increase sequencing depth, libraries were sequenced in two different lanes. All the libraries were loaded in each of the two lanes. Quality control of the raw data was performed with FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Libraries were trimmed for adapter removal using Trimmomatic (Bolger et al., 2014) and mapped to reference genome (Ensembl GRCm38) using TopHat2 (Kim et al., 2013) and Bowtie2 (Langmead et al., 2009). Library sizes of primary mapped reads were between 70 and 96 million reads. Samtools was used to manipulate BAM files (Li et al., 2009). For calling of differentially expressed genes (DEG), mapped reads were counted with HTSeq v0.6.1 (Anders et al., 2014) and count tables were analysed using DeSeq2 v1.10.1 R-package (Love et al., 2014) with a design of one factor with four levels (“wild-type”, “wild-type + IL1?”, “IL-1R8-/-”, “IL-1R8-/- + Anakinra"), and differences between groups were tested using contrasts for wild-type + IL1b versus wild-type; IL-1R8-/- versus wild-type; IL-1R8-/- + Kineret versus wild-type. For consideration of differentially regulated genes between conditions, we used adjusted p-value < 0.1 or adjusted p-value < 0.05 as indicated in the manuscript. Overall design: mRNA profiles in adult mouse cerebral cortex of wild type (WT), WT mice treated with IL1b (200 ng/kg, 14h), IL-1R8-/- mice, and IL-1R8-/- mice treated with IL1b antagonist Anakinra (25 mg/kg per day for 3 consecutive days, i.p. administration) were generated by deep sequencing, in triplicate, using Illumina HiSeq 2500. Each sample was prepared by pooling cortical tissue from 3 idenpendent mice.
Lack of IL-1R8 in neurons causes hyperactivation of IL-1 receptor pathway and induces MECP2-dependent synaptic defects.
Treatment, Subject
View SamplesTime course of early development of peripheral nerve, from embryonic day 9.5 to postnatal day 0.
Efficient isolation and gene expression profiling of small numbers of neural crest stem cells and developing Schwann cells.
No sample metadata fields
View SamplesGlucocorticoids (GCs) are a central component in treating childhood acute lymphoblastic leukemia (chALL). They mainly act via regulating gene transcription. However, control of mRNA translation by GC has never been assessed systematically. In our research, T- and precursor B-ALL cells were cultured with and without GC for 6 hours and subjected to translational profiling, a technique combining sucrose gradient fractionation and microarray analysis of mRNA in different fractions. Analysis of GC regulation in different pools revealed no significant differences in regulation of mRNA translation by GC, suggesting no evidence for translational regulation by GC.
Translational profiling in childhood acute lymphoblastic leukemia: no evidence for glucocorticoid regulation of mRNA translation.
Cell line, Treatment
View SamplesOur data mark GIP as a beneficial immunoregulator during obesity and suggest a novel untapped therapeutic potential for specific targeted GIP analogs.
Glucose-Dependent Insulinotropic Polypeptide Receptor Deficiency Leads to Impaired Bone Marrow Hematopoiesis.
Sex, Specimen part
View SamplesThe goal of this study was to assess whether the presence of HLA-B*35 contributes to activation of ER stress/UPR and inflammation in lcSScPAH PBMC.
The HLA-B*35 allele modulates ER stress, inflammation and proliferation in PBMCs from Limited Cutaneous Systemic Sclerosis patients.
Specimen part
View SamplesCD69 is a transmembrane protein expressed on the surface of activated leukocyte. The ligand for CD69 and the intracellular signaling pathway of this molecule are yet unknown. It is widely used as a marker of activated lymphocyte, but its function in immune system is not known.
CD69 regulates type I IFN-induced tolerogenic signals to mucosal CD4 T cells that attenuate their colitogenic potential.
Specimen part
View Samples