Background---For decades, plasma lipid levels have been known risk factors of atherosclerosis. Recently, inflammation has gained acceptance as a crucial event in the pathogenesis and development of atherosclerosis. A number of studies have provided some insights into the relationships between the two aspects of atherosclerosis: plasma lipids --- the risk factors, and circulating leukocytes --- the effectors of inflammation. In this study, we investigate the relationships between plasma lipids and leukocytes.
Identifying leukocyte gene expression patterns associated with plasma lipid levels in human subjects.
No sample metadata fields
View SamplesTo further understand the differences occurring in MCF10A cells as they polarize and differentiate in the Transwell model, we performed gene expression profiling with Affymetrix Human Genome U133 Plus 2.0 Arrays. Four experimental time points, were sampled: conventional cultures of MCF10A cells grown on plastic (Monolayer) and MCF10A cells plated on Transwells sampled at three TEER values, 200-300 cm2 (Base), 1400-1600 cm2 (Midpoint), and 3000-3200 cm2 (Plateau).
In vitro multipotent differentiation and barrier function of a human mammary epithelium.
No sample metadata fields
View SamplesPolymorphonuclear leukocytes (PMN) from patients with chronic granulomatous disease (CGD) fail to produce microbicidal concentrations of reactive oxygen species due to mutations in NOX2. Patients with CGD suffer from severe, life-threatening infections and inflammatory complications. Granulibacter bethesdensis is an emerging Gram-negative pathogen in CGD that resists killing by CGD PMN and inhibits PMN apoptosis through unknown mechanisms. Microarray analysis was used to study mRNA expression in normal and CGD PMN during incubation with G. bethesdensis and, simultaneously, in G. bethesdensis with normal and CGD PMN. We detected upregulation of anti-apoptotic genes (e.g., XIAP, GADD45B) and downregulation of pro-apoptotic genes (e.g., CASP8, APAF1) in infected PMN. Transcript and protein levels of inflammation and immunity-related genes were also altered. Upon interaction with PMN, G. bethesdensis altered expression of ROS-resistance genes in the presence of normal but not CGD PMN. Bacterial stress response genes, including ClpB, increased during phagocytosis by both normal and CGD PMN demonstrating responses to oxygen-independent PMN antimicrobial systems. Antisense knock down demonstrated that ClpB is dispensable for extracellular growth but is essential for bacterial resistance to both normal and CGD PMN. Metabolic adaptation of Granulibacter growth in PMN included upregulation of pyruvate dehydrogenase. Pharmacologic inhibition of pyruvate dehydrogenase by triphenylbismuthdichloride was lethal to Granulibacter. This study expands knowledge of microbial pathogenesis by Granulibacter in cells from permissive (CGD) and non-permissive (normal) hosts and identifies potentially druggable microbial factors, such as pyruvate dehydrogenase and ClpB, to help combat this antibiotic-resistant pathogen.
Simultaneous Host-Pathogen Transcriptome Analysis during Granulibacter bethesdensis Infection of Neutrophils from Healthy Subjects and Patients with Chronic Granulomatous Disease.
Specimen part, Disease, Disease stage, Time
View SamplesAbout 10% of all NSCLC patients respond to gefitnib treatment and all of these patients will acquire resistance to the EGFR TKI.
Rapidly acquired resistance to EGFR tyrosine kinase inhibitors in NSCLC cell lines through de-repression of FGFR2 and FGFR3 expression.
Cell line, Treatment
View SamplesIslet leukocytic infiltration (insulitis) is first obvious at around 4 weeks of age in the NOD mouse a model for human type 1 diabetes (T1DM). The molecular events leading to insulitis are poorly understood. Since TIDM is caused by numerous genes, we hypothesized that multiple molecular pathways are altered and interact to initiate this disease.
Molecular phenotyping of immune cells from young NOD mice reveals abnormal metabolic pathways in the early induction phase of autoimmune diabetes.
Age, Specimen part
View SamplesViral infections of the CNS are of increasing concern, especially among immunocompromised populations. Rodent models are often inappropriate for studies of CNS infection, as many viruses, including JC Virus (JCV) and HIV, cannot replicate in rodent cells. Consequently, human fetal brain-derived multipotential CNS progenitor cells (NPCs) that can be differentiated into neurons, oligodendrocytes, or astrocytes, have served as a model for CNS studies. NPCs can be non-productively infected by JCV, while infection of progenitor-derived astrocytes (PDAs) is robust. We profiled cellular gene expression at multiple times during differentiation of NPCs to PDAs. Several activated transcription factors show commonality between cells of the brain in which JCV replicates and lymphocytes in which JCV is likely latent. Bioinformatic analysis determined transcription factors that may influence the favorable transcriptional environment for JCV in PDAs. This study attempts to provide a framework for understanding the functional transcriptional profile necessary for productive JCV infection.
Differentiation of human fetal multipotential neural progenitor cells to astrocytes reveals susceptibility factors for JC virus.
Specimen part, Time
View SamplesFour vehicle-treated and four HhAntag-treated pancreatic xenograft tumors were profiled for gene expression changes using Affymetrix U133 Plus 2.0 and Affymetrix Mouse Genome 430 2.0 arrays.
A paracrine requirement for hedgehog signalling in cancer.
No sample metadata fields
View SamplesFresh Atypical ductal hyperplasia (ADH) tissue collected from breast of a women who either (1) had no prior history of breast cancer and had not developed breast cancer in five years after diagnosis, (2) had cancer before ADH, or had cancer at the time as ADH or developed cancer after ADH diagnosis
Identification of MMP-1 as a putative breast cancer predictive marker by global gene expression analysis.
No sample metadata fields
View SamplesTo investigate differential gene expression that might account for the differing glomerular phenotype of NPHS2-Cre +/+ mice when compared with wild-type control, including altered GBM thickness, loss of normal foot process morphology, and decrease in podocyte number, RNA sequencing analysis was performed on glomeruli extracted from both NPHS2-Cre +/+ and wild-type control mice. Overall design: Following isolation of glomeruli using Dynabeads from NPHS2-Cre +/+ and wild-type control mice (n=2 biological replicates per genotype, singly isolated), total RNA was extracted and RNA samples were submited for sample preparation and sequencing.
Podocyte-specific expression of Cre recombinase promotes glomerular basement membrane thickening.
Sex, Age, Specimen part, Cell line, Subject
View SamplesThis work studies the impact of AtNIGT1/HRS1-GR entrance in the nucleus upon DEX treatment in protoplasts.
AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip.
No sample metadata fields
View Samples