We recently found that the endoplasmic reticulum (ER) stress response (ERSR) is activated in surviving cardiac myocytes in a mouse model of in vivo myocardial infarction. ATF6 is an ER stress-activated transcription factor that induces ERSR genes, some of which encode proteins that may protect against ischemic damage. However, few ERSR genes have been identified in the heart, and there have been no gene expression profiling studies of ATF6-inducible genes, in vivo. We previously generated transgenic (TG) mice that express tamoxifen-activated ATF6, ATF6-MER, in the heart; ATF6-MER conferred tamoxifen-dependent ATF6 activation and protection from ischemic damage. To understand of the mechanism of ATF6-mediated cardioprotection, gene expression profiling of ATF6-MER TG mouse hearts was performed. Activated ATF6 changed expression levels of 1,162 genes in the heart; of the 775 ATF6-inducible genes, only 23 are known ERSR genes. One of the genes not expected to be induced by ATF6 is modulatory calcinuerin-interacting protein-1 (MCIP1). MCIP1 is induced in a calcineurin/NFAT-dependent manner during myocardial hypertrophy and it can feedback inhibit cardiomyocyte growth. We found that MCIP1 expression in cultured cardiomyocytes was increased by the prototypical ER stresser, tunicamycin (TM), or by simulated ischemia. Moreover, infecting cardiomyocytes with adenovirus encoding activated ATF6 induced MCIP1 expression and inhibited myocyte growth in response to the alpha 1-adrenergic agonist, phenylephrine. These results suggest that MCIP1 can be induced in the heart by ER stresses, such as ischemia. Moreover, b integrating hypertrophy and ER stress, MCIP-modulated myocyte growth may help rejuvenate nascent ER protein folding, which could contribute to protection from ischemic damage.
Coordination of growth and endoplasmic reticulum stress signaling by regulator of calcineurin 1 (RCAN1), a novel ATF6-inducible gene.
Sex, Age, Specimen part, Treatment
View SamplesNoncoding RNAs include small transcripts, such as microRNAs and piwi-interacting RNAs, and a wide range of long noncoding RNAs (lncRNAs). Although many lncRNAs have been identified, only a small number of lncRNAs have been characterized functionally. Here, we sought to identify lncRNAs differentially expressed during replicative senescence. We compared lncRNAs expressed in proliferating, early-passage, 'young' human diploid WI-38 fibroblasts [population doubling (PDL) 20] with those expressed in senescent, late-passage, 'old' fibroblasts (PDL 52) by RNA sequencing (RNA-Seq). Numerous transcripts in all lncRNA groups (antisense lncRNAs, pseudogene-encoded lncRNAs, previously described lncRNAs and novel lncRNAs) were validated using reverse transcription (RT) and real-time, quantitative (q)PCR. Among the novel senescence-associated lncRNAs (SAL-RNAs) showing lower abundance in senescent cells, SAL-RNA1 (XLOC_023166) was found to delay senescence, because reducing SAL-RNA1 levels enhanced the appearance of phenotypic traits of senescence, including an enlarged morphology, positive ß-galactosidase activity, and heightened p53 levels. Our results reveal that the expression of known and novel lncRNAs changes with senescence and suggests that SAL-RNAs play direct regulatory roles in this important cellular process. Overall design: RNA was extracted from both young and senescent WI-38 cells and used for total RNA-Seq.
Senescence-associated lncRNAs: senescence-associated long noncoding RNAs.
No sample metadata fields
View SamplesThe mammalian RNA-binding protein AUF1 (AU-binding factor 1, also known as heterogeneous nuclear ribonucleoprotein D, hnRNP D) binds to numerous mRNAs and influences their post-transcriptional fate. Given that many AUF1 target mRNAs encode muscle-specific factors, we investigated the function of AUF1 in skeletal muscle differentiation. In mouse C2C12 myocytes, where AUF1 levels rise at the onset of myogenesis and remain elevated throughout myocyte differentiation into myotubes, RIP (RNP immunoprecipitation) analysis indicated that AUF1 binds prominently to Mef2c (myocyte enhancer factor 2c) mRNA, which encodes the key myogenic transcription factor Mef2c. By performing mRNA half-life measurements and polysome distribution analysis, we found that AUF1 associated with the 3UTR of Mef2c mRNA and promoted Mef2c translation without affecting Mef2c mRNA stability. In addition, AUF1 promoted Mef2c gene transcription via a lesser-known role of AUF1 in transcriptional regulation. Importantly, lowering AUF1 delayed myogenesis, while ectopically restoring Mef2c expression levels partially rescued the impairment of myogenesis seen after reducing AUF1 levels. We propose that Mef2c is a key effector of the myogenesis program promoted by AUF1.
RNA-binding protein AUF1 promotes myogenesis by regulating MEF2C expression levels.
Sex, Specimen part, Cell line, Time
View SamplesThis experiment was carried out in the context of a pharmacogenetic study of long-term (4-year follow-up) response to Interferon-beta treatment in two cohorts of Italian Multiple Sclerosis patients, to identify genetic variants (SNPs) that may influence response to IFN-beta. We integrated results from meta-analysis of the two cohorts with gene expression profiling of IFN stimulated PBMCs from 20 healthy controls and eQTL analyses, to look at possible enrichment of IFN-beta induced genes with genes mapped by top-ranking meta-analyzed SNPs.
Pharmacogenetic study of long-term response to interferon-β treatment in multiple sclerosis.
Sex, Specimen part, Disease, Disease stage, Subject
View SamplesHere we used microarray expression profiling to characterise global changes in gene expression during stages of proliferation and differentiation of human neural stem cells
Associations of the Intellectual Disability Gene MYT1L with Helix-Loop-Helix Gene Expression, Hippocampus Volume and Hippocampus Activation During Memory Retrieval.
Specimen part, Cell line
View SamplesWe conditionally knocked out both Yap and Taz in cranial neural crest (CNC) using the Wnt1Cre driver and sequenced mRNA from embryonic day 10.5 mandibles. Overall design: Examination of mRNA level in E10.5 mandibular tissues from control and Wnt1Cre Taz and Yap dKO mutant.
Yap and Taz play a crucial role in neural crest-derived craniofacial development.
No sample metadata fields
View SamplesHuman medulloblastoma (MB) can be segregated into four major categories based on gene expression patterns: Hedgehog (HH) subtype, Wnt subtype, Group 3, and Group 4. However, they all exhibit strikingly different gene expression profiles from Atypical Teratoid/Rhabdoid Tumor (AT/RT). We re-analyzed published gene expression microarray dataset of pediatric brain tumors to identify a gene expression profile that clearly distinguished human AT/RT from human MB. We used this profile, choosing only genes that have clear murine orthologs, to compare tumors from Snf5F/Fp53L/LGFAP-Cre mice (in C57Bl/6 strain background) with MB from Ptc1+/- mice (in mixed C57Bl/6 and 129Sv strain background). Snf5F/Fp53L/LGFAP-Cre tumors are clearly very different from mouse MB and the markers that distinguish human AT/RT from human MB also distinguish the mouse tumors.
Generation of a mouse model of atypical teratoid/rhabdoid tumor of the central nervous system through combined deletion of Snf5 and p53.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
LITAF, a BCL6 target gene, regulates autophagy in mature B-cell lymphomas.
Specimen part, Cell line, Treatment
View SamplesNAD(P)H:quinone Oxidoreductase (NQO1) is essential for cell defense against reactive oxidative species, cancer, and metabolic stress. Recently, NQO1 was found in ribonucleoprotein (RNP) complexes, but NQO1-interacting mRNAs and the functional impact of such interactions are not known. Here, we used ribonucleoprotein immunoprecipitation (RIP) and microarray analysis to identify comprehensively the subset of NQO1 target mRNAs in human hepatoma HepG2 cells. One of its main targets, SERPINA1 mRNA, encodes the serine protease inhibitor -1-antitrypsin, A1AT, which is associated with disorders including obesity-related metabolic inflammation, chronic obstructive pulmonary disease (COPD), liver cirrhosis and hepatocellular carcinoma. Biotin pulldown analysis indicated that NQO1 can bind the 3 untranslated region (UTR) and the coding region (CR) of SERPINA1 mRNA. NQO1 did not affect SERPINA1 mRNA levels; instead, it enhanced the translation of SERPINA1 mRNA, as NQO1 silencing decreased the size of polysomes forming on SERPINA1 mRNA and lowered the abundance of A1AT. Luciferase reporter analysis further indicated that NQO1 regulates SERPINA1 mRNA translation through the SERPINA1 3UTR. Accordingly, NQO1-KO mice had reduced hepatic and serum levels of A1AT and increased activity of neutrophil elastase, one of the main targets of A1AT. We propose that this novel mechanism of action of NQO1 as RNA-binding protein may help to explain its pleiotropic biological effects.
Novel RNA-binding activity of NQO1 promotes SERPINA1 mRNA translation.
Specimen part, Cell line, Treatment
View SamplesPofut1 is an essential gene that glycosylates proteins containing EGF-like repeats, including Notch Receptors (NotchRs). Work in mice and in Drosophila has shown that O-fucosylation by Pofut1 is required for NotchR ligands to bind to and activate NotchRs. As such, Pofut1 deletion in skeletal myofibers allows for an analysis of potential functions and molecular changes of Pofut1 in skeletal muscle that derive from its expression in skeletal myofibers. In this study we compared gene expression profiles between quadriceps muscles in mice where Protein O-fucosyltransferase 1 (Pofut1) was deleted specifically in skeletal myofibers via use of a human skeletal alpha actin Cre transgene (Scre) and a loxP flanked Pofut1 gene (SCreFF) and mice which bore the only the Scre transgene but did not have floxed Pofut1 alleles (SCre++).
Deletion of <i>Pofut1</i> in Mouse Skeletal Myofibers Induces Muscle Aging-Related Phenotypes in <i>cis</i> and in <i>trans</i>.
Age, Specimen part
View Samples