Rationale: Cardiac development is a complex process that results in the first integrated, multi-lineage embryonic tissue. Imperfect developmental progression leads to congenital heart disease, the most common birth defect with developmental corruption affecting more than 1% of all live births. Interrogation of individual genes has provided the backbone for cardiac developmental biology, yet a comprehensive transcriptome derived from natural cardiogenesis is required to establish an unbiased roadmap to gauge innate developmental milestones necessary for stem cell-based differentiation and in vitro disease modeling.
Natural cardiogenesis-based template predicts cardiogenic potential of induced pluripotent stem cell lines.
Specimen part, Cell line, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
LITAF, a BCL6 target gene, regulates autophagy in mature B-cell lymphomas.
Specimen part, Cell line, Treatment
View SamplesMammalian heart development is built on highly conserved molecular mechanisms with polygenetic perturbations resulting in a spectrum of congenital heart diseases (CHD). However, the transcriptional landscape of cardiogenic ontogeny that regulates proper cardiogenesis remains largely based on candidate-gene approaches. Herein, we designed a time-course transcriptome analysis to investigate the genome-wide expression profile of innate murine cardiogenesis ranging from embryonic stem cells to adult cardiac structures. This comprehensive analysis generated temporal and spatial expression profiles, prioritized stage-specific gene functions, and mapped the dynamic transcriptome of cardiogenesis to curated pathways. Reconciling the bioinformatics of the congenital heart disease interactome, we deconstructed disease-centric regulatory networks encoded within this cardiogenic atlas to reveal stage-specific developmental disturbances clustered on epithelial-to-mesenchymal transition (EMT), BMP regulation, NF-AT signaling, TGFb-dependent induction, and Notch signaling. Therefore, this cardiogenic transcriptional landscape defines the time-dependent expression of cardiac ontogeny and prioritizes regulatory networks at the interface between health and disease.
Transcriptional atlas of cardiogenesis maps congenital heart disease interactome.
Age, Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice.
Specimen part, Disease
View SamplesAttempts at modeling chromosomal translocations involving MALT1 gene, hallmarks of human mucosa-associated lymphoid tissue (MALT) lymphoma, have failed to reproduce the disease in mice. Here we describe a transgenic model in which MALT1 expression was targeted to mouse hematopoietic stem/progenitor cells. In Sca1-MALT1 mice, MALT1 deregulation activated the NF-kappaB pathway in Sca1+ cells, promoting selective B-cell differentiation and mature lymphocyte accumulation in extranodal tissues, progressively leading to the development of clonal B-cell lymphomas. These tumors recapitulated the histopathological features of human MALT lymphomas, presenting typical lymphoepithelial lesions and plasmacytic differentiation. Transcriptional profiling of Sca1-MALT1 murine lymphomas revealed overlapping molecular signatures with human MALT lymphomas, including MALT1-mediated NF-kappaB activation, pro-inflammatory signaling and XBP1-induced plasmacytic differentiation. Moreover, murine Malt1 showed proteolytic activity by cleaving Bcl10 in Sca1-MALT1 lymphomas. Our novel technological approach has allowed modeling human MALT lymphoma in mice, which represent unique tools study MALT lymphoma biology and evaluate anti-MALT1 therapies.
Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice.
Specimen part, Disease
View SamplesComparison of gene expression profiling analysis of bone marrow isolated CD34+ cells from patients with MALT lymphoma vs. healthy individuals revealed a large number of differentially expressed genes that included NF-kB target genes, genes involved in inflamatory signalling and immunoglobulin genes, suggesting an early lymphoid B-cell priming.
Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice.
Specimen part, Disease, Disease stage
View SamplesAttempts at modeling chromosomal translocations involving MALT1 gene, hallmarks of human mucosa-associated lymphoid tissue (MALT) lymphoma, have failed to reproduce the disease in mice. Here we describe a transgenic model in which MALT1 expression was targeted to mouse hematopoietic stem/progenitor cells. In Sca1-MALT1 mice, MALT1 deregulation activated the NF-kappaB pathway in Sca1+ cells, promoting selective B-cell differentiation and mature lymphocyte accumulation in extranodal tissues, progressively leading to the development of clonal B-cell lymphomas. These tumors recapitulated the histopathological features of human MALT lymphomas, presenting typical lymphoepithelial lesions and plasmacytic differentiation. Transcriptional profiling of Sca1-MALT1 murine lymphomas revealed overlapping molecular signatures with human MALT lymphomas, including MALT1-mediated NFkappaB activation, pro-inflammatory signaling and XBP1-induced plasmacytic differentiation. Moreover, murine Malt1 showed proteolytic activity by cleaving Bcl10 in Sca1-MALT1 lymphomas. Our novel technological approach has allowed modeling human MALT lymphoma in mice, which represent unique tools study MALT lymphoma biology and evaluate anti-MALT1 therapies.
Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice.
Specimen part, Disease
View SamplesThe chromosomal translocation t(11;14)(q13;q32) leading to cyclin-D1 over-expression plays an essential role in the development of mantle cell lymphoma (MCL), an aggressive tumor that remains incurable with current therapies. Cyclin-D1 has been postulated as an effective therapeutic target, but its evaluation has been hampered by our incomplete understanding of its oncogenic functions and by the lack of valid MCL murine models. To address these issues, we generated a cyclin-D1-driven mouse model whereby cyclin-D1 expression can be externally regulated. These mice developed lymphomas capable of recapitulating most features of human MCL. We found that cyclin-D1 inactivation was not sufficient to induce lymphoma regression in vivo. However, using a combination of in vitro and in vivo assays, we identified a novel pro-survival cyclin-D1 function in MCL cells. Specifically, we demonstrate that cyclin-D1 sequestrates the pro-apoptotic protein BAX, thereby favoring BCL2 anti-apoptotic function. Accordingly, cyclin-D1 inhibition sensitized the lymphoma cells to apoptosis through BAX release. Thus, genetic or pharmacologic targeting of cyclin-D1 combined with a pro-apoptotic BH3 mimetic synergistically killed murine lymphomas and human MCL cells. Our study identifies a novel role of cyclin-D1 in deregulating apoptosis and highlights the potential benefit of simultaneously targeting cyclin-D1 and survival pathways in patients with MCL.
A cyclin-D1 interaction with BAX underlies its oncogenic role and potential as a therapeutic target in mantle cell lymphoma.
Specimen part, Cell line
View SamplesWe conditionally knocked out both Yap and Taz in cranial neural crest (CNC) using the Wnt1Cre driver and sequenced mRNA from embryonic day 10.5 mandibles. Overall design: Examination of mRNA level in E10.5 mandibular tissues from control and Wnt1Cre Taz and Yap dKO mutant.
Yap and Taz play a crucial role in neural crest-derived craniofacial development.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
High-throughput sequencing analysis of the chromosome 7q32 deletion reveals IRF5 as a potential tumour suppressor in splenic marginal-zone lymphoma.
Specimen part, Disease, Disease stage
View Samples