Activated T cells differentiate into functional subsets which require distinct metabolic programs. Glutaminase (GLS) converts glutamine to glutamate to provide substrate for the tricarboxylic acid cycle and epigenetic reactions and here we identify a key role for GLS in T cell activation and specification. Though GLS-deficiency diminished T cell activation, proliferation and impaired differentiation of Th17 cells, loss of GLS also increased Tbet and Interferon-? expression and CD4 Th1 and CD8 CTL effector cell differentiation. These changes were mediated by differentially altered gene expression and chromatin accessibility, leading to increased sensitivity of Th1 cells to IL-2 mediated mTORC1 signaling. In vivo, GLS-null T cells failed to drive a Th17-mediated Graft-vs-Host Disease model. Transient inhibition of GLS, however, increased Th1 and CTL T cell numbers in viral and chimeric antigen receptor models. Glutamine metabolism thus has distinct roles to promote Th17 but constrain Th1 and CTL effector cell differentiation. Overall design: Cells were treated with glutaminase1 inhibitor or vehicle
Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling.
No sample metadata fields
View Samples-catenin signaling is required for hair follicle development, but it is unknown whether it is sufficient to activate expression of hair follicle genes in embryonic skin. To address this we profiled gene expression in dermis from E15.5 KRT14-Cre Ctnnb1(Ex3)fl/+ embryos carrying an activating mutation in epithelial beta-catenin, and control littermate embryos.
Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling.
No sample metadata fields
View Samples-catenin signaling is required for hair follicle development, but it is unknown whether it is sufficient to activate expression of hair follicle genes in embryonic skin. To address this we profiled gene expression in skin dissected from E14.5 KRT14-Cre Ctnnb1(Ex3)fl/+ embryos carrying an activating mutation in epithelial beta-catenin, and control littermate embryos.
Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling.
No sample metadata fields
View Samples-catenin signaling is required for hair follicle development, but it is unknown whether it is sufficient to activate expression of hair follicle genes in embryonic skin. To address this we profiled gene expression in epidermis from E15.5 KRT14-Cre Ctnnb1(Ex3)fl/+ embryos carrying an activating mutation in epithelial beta-catenin, and control littermate embryos.
Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Microarray analysis on germfree mice elucidates the primary target of a traditional Japanese medicine juzentaihoto: acceleration of IFN-α response via affecting the ISGF3-IRF7 signaling cascade.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MicroRNA target prediction by expression analysis of host genes.
No sample metadata fields
View SamplesJuzehtaihoto, a Japanese traditional medicine has been used for the treatment of various kinds of diseases or disorders in an enteric-flora dependent manner.
Microarray analysis on germfree mice elucidates the primary target of a traditional Japanese medicine juzentaihoto: acceleration of IFN-α response via affecting the ISGF3-IRF7 signaling cascade.
Sex, Specimen part
View SamplesJuzehtaihoto, a Japanese traditional medicine has been used for the treatment of various kinds of disease or disorders in an enteric-flora dependent manner.
Microarray analysis on germfree mice elucidates the primary target of a traditional Japanese medicine juzentaihoto: acceleration of IFN-α response via affecting the ISGF3-IRF7 signaling cascade.
Sex, Specimen part
View SamplesTotal RNA samples from three biological replicates in which the hsa-mir-26b was overexpressed in HeLa cells were profiled by gene expression. As negative control, we used total RNA samples from HeLa cells transfected with cel-mir-67
MicroRNA target prediction by expression analysis of host genes.
No sample metadata fields
View Samples