refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 989 results
Sort by

Filters

Technology

Platform

accession-icon GSE41243
Gene expression from Gaucher Disease iPSc
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Gene expression data obtained from induced pluripotent stem cells derived from wild type fibroblasts (iPSc WT) and from Gaucher Disease type 2 fibroblasts (GD iPSc). Also, gene expression analysis from the initial fibroblasts was made (WT fibroblasts and GD- fibroblasts), as well as gene expression analysis from a human embryonic stem cell line (hES4).

Publication Title

Neuronopathic Gaucher's disease: induced pluripotent stem cells for disease modelling and testing chaperone activity of small compounds.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE109284
LXR nuclear receptors are transcriptional regulators of dendritic cell chemotaxis
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The liver X receptors (LXRs) are ligand-activated nuclear receptors with established roles in the maintenance of lipid homeostasis in multiple tissues. LXRs exert additional biological functions as negative regulators of inflammation, particularly in macrophages. However, the transcriptional responses controlled by LXRs in other myeloid cells, such as dendritic cells (DC), are still poorly understood. Here we used gain- and loss-of-function models to characterize the impact of LXR deficiency on DC activation programs. Our results identified an LXR-dependent pathway that is important for DC chemotaxis. LXR-deficient mature DCs are defective in stimulus-induced migration in vitro and in vivo. Mechanistically, we show that LXRs facilitate DC chemotactic signaling by regulating the expression of CD38, an ectoenzyme important for leukocyte trafficking. Pharmacological or genetic inactivation of CD38 activity abolished LXR-dependent induction of DC chemotaxis. Using the LDLR-/- mouse model of atherosclerosis, we also demonstrated that hematopoietic CD38 expression is important for the accumulation of lipid-laden myeloid cells in lesions, suggesting that CD38 is a key factor in leukocyte migration during atherogenesis. Collectively, our results demonstrate that LXRs are required for efficient emigration of DCs in response to chemotactic signals during inflammation.

Publication Title

LXR nuclear receptors are transcriptional regulators of dendritic cell chemotaxis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE109277
Gene expression profile of in vitro differentiated mouse bone marrow-derived dendritic cells.
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Mouse BMDCs were differentiated from bone marrow by GM-CSF and IL-4 for 9 days.

Publication Title

LXR nuclear receptors are transcriptional regulators of dendritic cell chemotaxis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34000
Expression data from the dorsal root ganglia during streptozotocin-induced painful diabetic neuropathy in rats
  • organism-icon Rattus norvegicus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

FK1706 potentiated nerve growth factor-induced neurite outgrowth, putatively mediated via FKBP-52 and the Ras/Raf/MAPK signaling pathway. It also improved mechanical allodynia accompanied by the recovery of intraepidermal nerve fiber density in a painful diabetic neuropathy in rats.

Publication Title

FK1706, a novel non-immunosuppressive immunophilin ligand, modifies gene expression in the dorsal root ganglia during painful diabetic neuropathy.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE146400
Expression data of the Cerebral cortex in Tyr-Trp treated AD model mouse
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Clariom S Array (clariomsmouse)

Description

Scope: As a result of population ageing, the number of Alzheimer’s disease (AD) patients has rapidly increased. There are many hypothesises on the pathogenesis of AD, but its detailed molecular mechanism is still unknown, and so no effective preventive or therapeutic measures have been established. Some reports showed a decrease in levels of norepinephrine (NE) has been suspected to be involved in the decline of cognitive function in AD patients and NE concentrations were decreased in postmortem AD patient brains. Tyr-Trp was identified as being the most effective dipeptide in enhancing norepinephrine (NE) synthesis and metabolism. And Tyr-Trp treatment ameliorated the short-term memory dysfunction in AD model mice caused by amyloid beta (Aβ) 25-35. So, the purpose of this study was to investigate the preventive or/and protective effects of Tyr-Trp administration in AD model mice.

Publication Title

Tyr-Trp administration facilitates brain norepinephrine metabolism and ameliorates a short-term memory deficit in a mouse model of Alzheimer's disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE51198
Expression data from mouse embryo (E5) cultured in the narrow and wide cavity
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The mouse anterior-posterior (A-P) axis polarization is preceded by formation of the distal visceral endoderm (DVE). However, the mechanism of the emergence of DVE cells is not well understood. Here, we show by in vitro culturing of embryos immediately after implantation in micro-fabricated cavities (narrow; 90 micro-meter, wide; 180 miro-meter in diameter) that the external mechanical cues exerted on the embryo, i.e. cultured in the narrow cavity, are crucial for DVE formation as well as elongated egg cylinder shape. This implies that these developmental events immediately after implantation are not simply embryo-autonomous processes but require extrinsic mechanical factors. Further whole genome-wide gene expression profiles with DNA microarray revealed that no significant difference of transcripts were evident with or without mechanical cues except DVE-related markers. Thus, we propose that external mechanical cues rather than not specific molecular pathways can trigger the establishment of the A-P axis polarization, which is one of the fundamental proccesses of mammalian embryogenesis.

Publication Title

External mechanical cues trigger the establishment of the anterior-posterior axis in early mouse embryos.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE29175
Expression data from ovarian cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Ovarian clear cell carcinoma (OCCC) shows unique clinical features including an association with endometriosis and poor prognosis. We previously reported that the contents of endometriotic cysts, especially high concentrations of free iron, are a possible cause of OCCC carcinogenesis through iron-induced persistent oxidative stress. In this study, we conducted gene expression microarray analysis using 38 ovarian cancer cell lines and identified genes commonly expressed in both OCCC cell lines and clinical samples, which comprise an OCCC gene signature. The OCCC signature reproducibly predicts OCCC specimens in other microarray data sets, suggesting that this gene profile reflects the inherent biological characteristics of OCCC. The OCCC signature contains known markers of OCCC, such as hepatocyte nuclear factor-1b (HNF-1b) and versican (VCAN), and other genes that reflect oxidative stress. Expression of OCCC signature genes was induced by treatment of immortalized ovarian surface epithelial cells with the contents of endometriotic cysts, indicating that the OCCC signature is largely dependent on the tumor microenvironment. Induction of OCCC signature genes is at least in part epigenetically regulated, as we found hypomethylation of HNF-1b and VCAN in OCCC cell lines. This genomewide study indicates that the tumor microenvironment induces specific gene expression profiles that contribute to the development of distinct cancer subtypes.

Publication Title

Identification of an ovarian clear cell carcinoma gene signature that reflects inherent disease biology and the carcinogenic processes.

Sample Metadata Fields

Sex, Specimen part, Cell line, Treatment

View Samples
accession-icon GSE37536
Genome wide identification of ORE1 early target genes
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Global transcriptome patterns were performed using ORE1-IOE-2h (2h after Estradiol and Mock treatment) as well as transiently (6h) overexpressed Arabidopsis mesophyll cell protoplasts

Publication Title

NAC transcription factor ORE1 and senescence-induced BIFUNCTIONAL NUCLEASE1 (BFN1) constitute a regulatory cascade in Arabidopsis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE27677
A conserved JNK/AP-1 module is a key mediator of intermittent fasting-induced longevity in C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Dietary restriction extends lifespan and delays the age-related physiological decline in many species. Intermittent fasting (IF) is one of the most effective dietary restriction regimens that extends lifespan in C. elegans and mammals1,2. In C. elegans, the FOXO transcription factor DAF-16 is implicated in fasting-induced gene expression changes and the longevity response to IF3; however, the mechanisms that sense and transduce fasting-stress stimuli have remained largely unknown. Here we show that a KGB-1/AP1 (activator protein 1) module is a key signalling pathway that mediates fasting-induced transcriptional changes and IF-induced longevity. Our promoter analysis coupled to genome-wide microarray results has shown that the AP-1-binding site, together with the FOXO-binding site, is highly over-represented in the promoter regions of fasting-induced genes. We find that JUN-1 (C. elegans c-Jun) and FOS-1 (C. elegans c-Fos), which constitute the AP-1 transcription factor complex, are required for IF-induced longevity. We also find that KGB-1 acts as a direct activator of JUN-1 and FOS-1, is activated in response to fasting, and, among the three C. elegans JNKs, is specifically required for IF-induced longevity. Our results demonstrate that most fasting-induced upregulated genes, including almost all of the DAF-16-dependent genes, require KGB-1 and JUN-1 function for their induction, and that the loss of kgb-1 suppresses the fasting-induced upregulation of DAF-16 target genes without affecting fasting-induced DAF-16 nuclear translocation. These findings identify the evolutionarily conserved JNK/AP-1 module as a key mediator of fasting-stress responses, and suggest a model in which two fasting-induced signalling pathways leading to DAF-16 nuclear translocation and KGB-1/AP-1 activation, respectively, integrate in the nucleus to coordinately mediate fasting-induced transcriptional changes and IF-induced longevity.

Publication Title

A fasting-responsive signaling pathway that extends life span in C. elegans.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE80985
Expresion data from primary retinal pigment epithelium (RPE) and immortalized RPE
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used microarrays to detail the global gene expression of primary RPE and immortalized RPE.

Publication Title

Identification of a Gene Encoding Slow Skeletal Muscle Troponin T as a Novel Marker for Immortalization of Retinal Pigment Epithelial Cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact