Brassinosteroids (BRs) are growth-promoting plant hormones that play a role in abiotic stress responses, but molecular modes that enable this activity remain largely unknown. Here we show that BRs participate in the regulation of freezing tolerance. BR signaling-defective mutants of Arabidopsis thaliana were hypersensitive to freezing before and after cold acclimation. The constitutive activation of BR signaling, in contrast, enhanced freezing resistance. Evidence is provided that the BR-controlled basic helixloophelix transcription factor CESTA (CES) can contribute to the constitutive expression of the C-REPEAT/DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR (CBF) transcriptional regulators that control cold responsive (COR) gene expression. In addition, CBF-independent classes of BR-regulated COR genes are identified that are regulated in a BR- and CES-dependent manner during cold acclimation. A model is presented in which BRs govern different cold-responsive transcriptional cascades through the posttranslational modification of CES and redundantly acting factors. This contributes to the basal resistance against freezing stress, but also to the further improvement of this resistance through cold acclimation.
Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants.
Age, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Epigenetic regulations in the IFNγ signalling pathway: IFNγ-mediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigen-presenting machinery genes.
Specimen part, Cell line
View SamplesReversible MHC class I deficiency on tumour cells is commonly caused by coordinated silencing of antigen-presenting machinery genes and restorable by IFN. Here we describe association of DNA demethylation of selected antigen-presenting machinery gene regulatory regions located in the MHC genomic locus (TAP-1, TAP-2, LMP-2, LMP-7) upon IFN treatment with MHC class I upregulation on tumour cells. Our novel findings demonstrate that IFN acts as an epigenetic modifier upregulating the expression of antigen-presenting machinery genes through DNA demethylation. Our data also cast more light on the role of DNA methylation in tumour cell escape from specific immunity.
Epigenetic regulations in the IFNγ signalling pathway: IFNγ-mediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigen-presenting machinery genes.
Specimen part, Cell line
View SamplesReversible MHC class I deficiency on tumour cells is commonly caused by coordinated silencing of antigen-presenting machinery genes and restorable by IFN. Here we describe association of DNA demethylation of selected antigen-presenting machinery gene regulatory regions located in the MHC genomic locus (TAP-1, TAP-2, LMP-2, LMP-7) upon IFN treatment with MHC class I upregulation on tumour cells. Our novel findings demonstrate that IFN acts as an epigenetic modifier upregulating the expression of antigen-presenting machinery genes through DNA demethylation. Our data also cast more light on the role of DNA methylation in tumour cell escape from specific immunity.
Epigenetic regulations in the IFNγ signalling pathway: IFNγ-mediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigen-presenting machinery genes.
Specimen part, Cell line
View SamplesReversible MHC class I deficiency on tumour cells is commonly caused by coordinated silencing of antigen-presenting machinery genes and restorable by IFN. Here we describe association of DNA demethylation of selected antigen-presenting machinery gene regulatory regions located in the MHC genomic locus (TAP-1, TAP-2, LMP-2, LMP-7) upon IFN treatment with MHC class I upregulation on tumour cells. Our novel findings demonstrate that IFN acts as an epigenetic modifier upregulating the expression of antigen-presenting machinery genes through DNA demethylation. Our data also cast more light on the role of DNA methylation in tumour cell escape from specific immunity.
Epigenetic regulations in the IFNγ signalling pathway: IFNγ-mediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigen-presenting machinery genes.
Specimen part, Cell line
View SamplesOverarching aim is to achieve a greater understanding of the control of progenitor cells within the adult human retina within the normal and diseased retinal microenvironment. Specifically we will assess via our experimental designs: (i) the control of CD133+ retinal cell populations that display mitotic potential and differentiation and
CD133+ adult human retinal cells remain undifferentiated in Leukaemia Inhibitory Factor (LIF).
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Using gene expression to predict differences in the secretome of human omental vs. subcutaneous adipose tissue.
Sex, Specimen part
View SamplesImmunoprecipitation of EGFR from irradiated A549 (ATCC CCL185) cells was performed in order to characterize bound mRNA species with the help of microarray analysis
New roles for nuclear EGFR in regulating the stability and translation of mRNAs associated with VEGF signaling.
Cell line, Treatment
View Samples5-aminolevulinic acid (ALA) is the common precursor of all biological synthezised tetrapyrroles. Inhibition of ALA synthesis results in decreased amounts of chlorophylls, heme, siroheme and phytochrome. It was previously shown that 4 out of 5 Arabidopsis mutants uncoupling nuclear gene expression from the physiological state of the chloroplast are affected in plant tetrapyrrole biosynthesis. It is common to all four mutants to show a reduced ALA formation.
Evidence for a Contribution of ALA Synthesis to Plastid-To-Nucleus Signaling.
Age, Specimen part
View SamplesThe objective was to characterize differences in the secretome of human omental compared with subcutaneous adipose tissue using global gene expression profiling. Gene expression was measured using Affymetrix microarrays in subcutaneous and omental adipose tissue (n=3 independent subjects; 6 arrays). Predictive bioinformatic algorithms were employed to identify those differentially expressed genes that code for secreted proteins and to identify common pathways between these proteins. All patients provided informed written consent before inclusion in the study which was approved by the North of Scotland Research Ethics Committee (NOSREC).
Using gene expression to predict differences in the secretome of human omental vs. subcutaneous adipose tissue.
Sex, Specimen part
View Samples