In an attempt to elucidate the molecular mechanisms underlying the multiple roles of L1 in endothelium, we checked whether manipulating its expression affected the transcriptome of lECs. To this purpose, we compared the gene expression profiles of L1-overexpressing and control lECs by Affymetrix, which revealed a remarkable effect of L1 overexpression on lECs transcriptome.
Endothelial deficiency of L1 reduces tumor angiogenesis and promotes vessel normalization.
Specimen part
View SamplesPathways that govern normal stem cell (SC) function are often subverted in cancer. Here, we report the isolation to near purity of human normal mammary SC (hNMSCs), from cultured mammospheres, based on their ability to retain the lipophilic dye PKH26 as a consequence of their quiescent nature. We demonstrated that PKH26-positive cells possess all the characteristics of hNMSCs. The transcriptional profile of PKH26-positive cells (hNMSC signature) was able to predict biological and molecular features of breast cancers. By using markers of the hNMSC signature, we could prospectively isolate SCs from the normal gland and from breast tumors. Poorly-differentiated aggressive (G3) cancers displayed higher content of prospectively isolated cancer SCs, than well-differentiated less aggressive (G1) cancers. By comparing G3 and G1 tumors in xenotransplantation experiments, we directly demonstrated that G3s are enriched in cancer SCs. Our data support the notion that the heterogeneous phenotypical and molecular traits of human breast cancers are a function of their SC content.
Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content.
Specimen part
View SamplesJunction Adhesion Molecule-A (JAM-A) is present on leukocytes and platelets where it promotes cell adhesion and motility. We are interested in an interaction between JAM-A and tumor progression/metastases. To address this point, we mated JAM-A-/- mice and mouse mammary tumor model MMTV-PyMT mice which, which express polyoma middle T antigen under the control of mouse mammary tumor virus. MMTV-PyMT mice show 100% penetration of mammary tumor and highly metastases to lung. MMTV-PyMT mice without JAM-A show less primary tumor progression, therefore JAM-A enhance primary tumor progression. Then we are addressing the molecular mechanism of this phenomenon by in vivo. Furthermore, we would like to examine JAM-A deficient MMTV tumor signature.
Abrogation of junctional adhesion molecule-A expression induces cell apoptosis and reduces breast cancer progression.
Specimen part
View SamplesThese data include RNA Seq data generated from Ring1b wild type and Ring1b KO Ring1a-/- Cdkn2a-/- Lin- HSC cells non-transduced or transduced with MLL-AF9, HOXA9 and PML-RARa. Overall design: Total RNA extracted from Ring1b wild type and Ring1b KO Ring1a-/- Cdkn2a-/- Lin- HSC cells non-transduced or transduced with MLL-AF9, HOXA9 and PML-RARa.
Maintenance of leukemic cell identity by the activity of the Polycomb complex PRC1 in mice.
No sample metadata fields
View SamplesThese data include RNA Seq data generated from wild type and Ring1a Ring1b dKO Cdkn2a-/- MLL-AF9 Leukemic cells Overall design: mRNA library preparation from Ring1a-/-;Ring1bf/f Cdkn2a-/- MLL-AF9 leukemic cells treated with OHT or EtOH
Maintenance of leukemic cell identity by the activity of the Polycomb complex PRC1 in mice.
Cell line, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop.
Cell line
View SamplesThe first bona fide PTP proto-oncogene was the Src-homology 2 domain-containing phosphatase SHP2 (encoded by PTPN11), an ubiquitously expressed PTP that transduces mitogenic, pro-survival, cell fate and/or pro-migratory signals from numerous growth factor-, cytokine- and extracellular matrix receptors. In malignancies, SHP2 is hyperactivated either downstream of oncoproteins or by mutations.We provide analysis of the breast cancer cells BT474 grown as xenografts in the presence or absence of SHP2 for 30 days.
Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop.
Cell line
View SamplesThe first bona fide PTP proto-oncogene was the Src-homology 2 domain-containing phosphatase SHP2 (encoded by PTPN11), an ubiquitously expressed PTP that transduces mitogenic, pro-survival, cell fate and/or pro-migratory signals from numerous growth factor-, cytokine- and extracellular matrix receptors. In malignancies, SHP2 is hyperactivated either downstream of oncoproteins or by mutations.We provide analysis of a primary triple-negative breast tumor grown as xenografts in the presence or absence of SHP2 for 30 days.
Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop.
No sample metadata fields
View SamplesTranscription factor (TF)-induced reprogramming of somatic cells into induced pluripotent stem cells (iPSC) is associated with genome-wide changes in chromatin modifications. Polycomb-mediated histone H3 lysine-27 trimethylation (H3K27me3) has been proposed as a defining mark that distinguishes the somatic from the iPSC epigenome. Here, we dissected the functional role of H3K27me3 in TF-induced reprogramming through the inactivation of the H3K27 methylase EZH2 at the onset of reprogramming. Our results demonstrate that surprisingly the establishment of functional iPSC proceeds despite global loss of H3K27me3. iPSC lacking EZH2 efficiently silenced the somatic transcriptome and differentiated into tissues derived from the three germ layers. Remarkably, the genome-wide analysis of H3K27me3 in Ezh2 mutant iPSC cells revealed the retention of this mark on a highly selected group of Polycomb targets enriched for developmental regulators controlling the expression of lineage specific genes. Erasure of H3K27me3 from these targets led to a striking impairment in TF-induced reprogramming. These results indicate that PRC2-mediated H3K27 trimethylation is required on a highly selective core of Polycomb targets whose repression enables TF-dependent cell reprogramming.
Cell reprogramming requires silencing of a core subset of polycomb targets.
Specimen part
View SamplesThe first bona fide PTP proto-oncogene was the Src-homology 2 domain-containing phosphatase SHP2 (encoded by PTPN11), an ubiquitously expressed PTP that transduces mitogenic, pro-survival, cell fate and/or pro-migratory signals from numerous growth factor-, cytokine- and extracellular matrix receptors. In malignancies, SHP2 is hyperactivated either downstream of oncoproteins or by mutations.We provide analysis of the mammary epithelial cells MCF10A overexpressing human HER2 and HER3 and grown in 3D cultures for 15 days in the presence or absence of SHP2.
Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop.
Cell line
View Samples