RNA-sequencing was performed on human CD19- CD138+ bone marrow plasma cells. Overall design: 4 biological replicates of human CD19- CD138+ bone marrow plasma cells and 1 replicate each of naïve, IgM memory, IgG memory, and plasmablasts from peripheral blood.
Mitochondrial Pyruvate Import Promotes Long-Term Survival of Antibody-Secreting Plasma Cells.
Specimen part, Subject
View SamplesInfection is a major complication and cause of mortality and morbidity after acute stroke however the mechanisms are poorly understood. After experimental stroke the microarchitecture and cellular composition of the spleen are extensively disrupted resulting in deficits to immune function.
Experimental Stroke Differentially Affects Discrete Subpopulations of Splenic Macrophages.
Specimen part, Treatment
View SamplesIdentification of microRNA expressed in Arabidopsis plants grown at different ambient CO2 concentrations and different ambient temperatures Overall design: Small RNA sequencing of Arabidopsis wild type ecotype Columbia (Col-0) rossette leaves at bolting stage grown at 430 ± 50ppm and 810 ± 50ppm CO2 concentrations and 22 ± 0.5oC and 28 ± 0.5oC temperatures
The effects of carbon dioxide and temperature on microRNA expression in Arabidopsis development.
Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets.
Specimen part, Cell line, Treatment
View SamplesThe RNA samples from HT-29 (ATCC) colon cancer cell line were reverse transcribed into cDNAs and categorized in 3 groups with different concentrations of 5-aza-deoxy-cytidine (5-Aza); in each group three replicative 150 mm cultures were treated with: 1) dimethyl sulfoxide (vehicle alone, 0 M 5-Aza); 2) 5M 5-Aza and 3) 10 M 5-Aza; for five days
Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets.
Specimen part, Cell line, Treatment
View SamplesPrimary mitochondrial respiratory chain (RC) diseases are heterogeneous in etiology and manifestations but collectively impair cellular energy metabolism. To identify a common cellular response to RC disease, systems biology level transcriptome investigations were performed in human RC disease skeletal muscle and fibroblasts. Global transcriptional and post-transcriptional dysregulation in a tissue-specific fashion was identified across diverse RC complex and genetic etiologies. RC disease muscle was characterized by decreased transcription of cytosolic ribosomal proteins to reduce energy-intensive anabolic processes, increased transcription of mitochondrial ribosomal proteins, shortened 5'-UTRs to improve translational efficiency, and stabilization of 3'-UTRs containing AU-rich elements. These same modifications in a reversed direction typified RC disease fibroblasts. RC disease also dysregulated transcriptional networks related to basic nutrient-sensing signaling pathways, which collectively mediate many aspects of tissue-specific cellular responses to primary RC disease. These findings support the utility of a systems biology approach to improve mechanistic understanding of mitochondrial RC disease.
Primary respiratory chain disease causes tissue-specific dysregulation of the global transcriptome and nutrient-sensing signaling network.
Sex, Age, Specimen part
View SamplesHistone methylation modulates gene expression in response to external and internal cues. We uncovered a non-redundant role for the Arabidopsis histone methyltransferase, SDG8, which provides a unique opportunity to study the global function of a specific histone methyltransferase within in a multicellular organism. We previously used a promoter responsive to light and carbon in a positive genetic screen to identify an Arabidopsis carbon and light insensitive mutant cli186. In this study, we characterize the mutant cli186 as a complete deletion of a histone methyltransferase gene SDG8 (now renamed sdg8-5). To assess the global role of SDG8, we compared the global histone methylation patterns and the transcriptome of sdg8-5 to wild type (WT) in the context of a transient carbon and light treatment. We showed that the complete deletion of SDG8 in sdg8-5 is associated with a dramatic reduction of H3K36me3 towards the 3 of the gene body, which correlates with significant reduction in gene expression. We uncovered 1,084 high confidence functional targets of SDG8 affected in both H3K36me3 marks and gene expression that are associated with specific biological processes including defense, photosynthesis, nutrient metabolism and energy metabolism. Importantly, 71% of these functional targets are responsive to carbon and/or light. Our model suggests that SDG8 functions to mark specific sets of genes with H3K36me3 in the gene body for active transcription, to tune genes involved in primary metabolism that are responsive to the energy level in the environment.
The histone methyltransferase SDG8 mediates the epigenetic modification of light and carbon responsive genes in plants.
Treatment
View SamplesTo identify potential transient interactions between a TF and its targets, we developed an approach that can identify primary targets based either on TF-induced regulation or TF-binding, assayed in the same samples. Our studies focused on the TF bZIP1 (BASIC LEUCINE ZIPPER 1), a central integrator of cellular and metabolic signaling.
Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis.
No sample metadata fields
View SamplesTumors that show evidence of epithelial to mesenchymal transition (EMT) have been associated with metastasis, drug resistance, and poor prognosis. EMT may alter the molecular requirements for growth and survival in different contexts, but the underlying mechanisms remain incomplete. Given the heterogeneity along the EMT spectrum between and within tumors it is important to define the requirements for growth and survival in cells with an epithelial or mesenchymal phenotype to maximize therapeutic efficacy.
Epithelial-to-mesenchymal transition rewires the molecular path to PI3K-dependent proliferation.
Specimen part, Cell line, Treatment
View SamplesCalcific aortic valvular disease (CAVD) is characterized by sclerosis of the aortic valve leaflets and recent clinical studies have linked several other risk factors to this disease, including male sex. In this study we examined potential sex-related differences in gene expression profiles between porcine male and female valvular interstitial cells (VICs) to explore possible differences in CAVD propensity on the cellular level.
Sex-related differences in gene expression by porcine aortic valvular interstitial cells.
Sex, Specimen part
View Samples