Severe loss-of-function alleles of DCL1 are embryonic lethal. Defects in cell division were seen as early as the globular stage in the strong loss-of-function allele dcl1-15. Phenotypic work with dcl1-15 and the null allele dcl1-5 suggested that, in addition to the severe patterning defects, the mutants were maturing earlier than wild-type embryos.
MicroRNAs regulate the timing of embryo maturation in Arabidopsis.
No sample metadata fields
View SamplesWe advance a three gene model of arsenate tolerance in rice based on testing root growth of 108 recombinant inbred lines (RILs) of the Bala x Azucena population. Marker genotype at 3 loci determined arsenate tolerance in 99% of RILs tested. Interestingly, plants must inherit 2, but any two alleles from the tolerant parent (Bala) to have the tolerant phenotype. Challenging the Affymetrix GeneChip Rice Genome array with Azucena and Bala RNA isolated from control and arsenate treated plants revealed 592 genes 2 fold-upregulated by arsenate and 696 downregulated. The array data was also used to identify which genes are expressed within the three target loci.
Rice-arsenate interactions in hydroponics: whole genome transcriptional analysis.
No sample metadata fields
View SamplesDietary restriction (DR) extends lifespan in a wide variety of species, yet the underlying mechanisms are not well understood. Here we show that the Caenorhabditis elegans HNF4a-related nuclear hormone receptor NHR-62 is required for metabolic and physiologic responses associated with DR-induced longevity. nhr-62 mediates the longevity of eat-2 mutants, a genetic mimetic of dietary restriction, and blunts the longevity response of DR induced by bacterial food dilution at low nutrient levels. Metabolic changes associated with DR, including decreased Oil Red O staining, decreased triglyceride levels, and increased autophagy are partly reversed by mutation of nhr-62. Additionally, the DR fatty acid profile is altered in nhr-62mutants. Expression profiles reveal that several hundred genes induced by DR depend on the activity of NHR-62, including a putative lipase required for the DR response. This study provides critical evidence of nuclear hormone receptor regulation of the DR longevity response, suggesting hormonal and metabolic control of life span. Overall design: Young adult worms before bearing eggs inside were collected. N2 serves as the control of wild type. 3 biological replicates included in this experiment.
Dietary restriction induced longevity is mediated by nuclear receptor NHR-62 in Caenorhabditis elegans.
Subject
View SamplesIn non-neuronopathic type 1 Gaucher disease (GD1) mutations in GBA1 gene results in deficiency of glucocerebrosidase and the accumulation of glucocerebroside in lysosomes of mononuclear phagocytes. The metabolic defect leads to a complex phenotype involving the viscera, the bone marrow and the skeleton. However the prevailing macrophage-centric view of the disease does not explain emerging aspects of the disease such as hematological malignancies, autoimmune diathesis, Parkinsons disease and osteoporosis poorly responsive to macrophage targeted enzyme therapy or anti-resorptive therapies. We developed a conditional KO mouse model of GD1 to delineate cells and pathways in GD1. By targeting the cells of the hematopoetic and mesenchymal cell lineages through an Mx1 promoter, we recapitulated human GD1. We show that, in addition to significant visceral and hematologic disease, GD1 mice show profound osteopenia due to a bone formation defect. Cytokine measurements, microarray analysis and cellular immunophenotyping together point to widespread dysfunction of macrophages and other immune cells together with a striking abnormality in thymic T-cell development. Our study provides the first direct evidence for the involvement of cell lineages other than mononuclear phagocytes, most notably osteoblasts and T cells, in the pathophysiology of the clinical spectrum of type 1 GD. These findings have important implications for treatment of GD1.
Glucocerebrosidase gene-deficient mouse recapitulates Gaucher disease displaying cellular and molecular dysregulation beyond the macrophage.
Specimen part, Disease
View SamplesNon-switched memory (ME-M) B cells are an enigmatic population of IgM+ memory lymphocytes that are thought to emerge from germinal centers during systemic antibody responses against T cell-dependent antigens. To gain new insights into the properties of ME-M B cells generated during intestinal antibody responses, we performed global gene transcriptome expression analysis on nave, ME-M and canonical memory class-switched (ME-SW) B cells purified from human gut samples. Marginal zone (MZ) and ME-SW B cells isolated from human spleen samples were used for comparison.
Human Secretory IgM Emerges from Plasma Cells Clonally Related to Gut Memory B Cells and Targets Highly Diverse Commensals.
Specimen part
View SamplesGlobal transcriptome patterns were determined in XVE-14 and wild-type seedlings induced for 45 min b-estradiol in order to identify the genes early regulated by EBE transcription factor.
EBE, an AP2/ERF transcription factor highly expressed in proliferating cells, affects shoot architecture in Arabidopsis.
Specimen part
View SamplesResveratrol, a natural phytoestrogen found in red wine and a variety of plants, is reported to have protective effects against lung cancer, however there is very little work directed towards the understanding of the mechanism of action of resveratrol in lung cancer. In this study we used an experimental approach to understand the biological activity and molecular mechanisms of resveratrol in A549 lung cancer cells. Gene expression profiles were compiled using an oligonucleotide microarray to determine altered expression levels in resveratrol treated cells.
Molecular mechanisms of resveratrol action in lung cancer cells using dual protein and microarray analyses.
No sample metadata fields
View SamplesRationale: Obstructive sleep apnea (OSA) has been associated with a number of chronic disorders that may improve with effective therapy. However, the molecular pathways affected by continuous positive airway pressure (CPAP) treatment are largely unknown. We sought to assess the system-wide consequences of CPAP therapy by transcriptionally profiling peripheral blood leukocytes (PBLs). Methods: Subjects diagnosed with severe OSA were treated with CPAP, and whole-genome expression measurement of PBLs was performed at baseline and following therapy. We used Gene Set Enrichment Analysis (GSEA) to identify gene sets that were differentially enriched. Network analysis was then applied to identify key drivers of pathways influenced by CPAP. Results: 18 subjects with severe OSA (apnea hypopnea index 30 events/hour) underwent CPAP therapy and microarray analysis of their PBLs. Treatment with CPAP improved AHI, daytime sleepiness and blood pressure but did not affect anthropometric measures. GSEA revealed a number of enriched gene sets, many of which were involved in neoplastic processes and displayed down-regulated expression patterns in response to CPAP. Network analysis identified several densely connected genes that are important modulators of cancer and tumor growth. Conclusions: Effective therapy of OSA with CPAP is associated with alterations in circulating leukocyte gene expression. Functional enrichment and network analyses highlighted transcriptional suppression in cancer-related pathways suggesting potentially novel mechanisms linking OSA with neoplastic signatures.
Treatment of obstructive sleep apnea alters cancer-associated transcriptional signatures in circulating leukocytes.
Treatment, Subject
View SamplesThe purpose of this experiment is to understand which transcripts are differentially expressed following exposure to TCDD.
TCDD inhibits heart regeneration in adult zebrafish.
Treatment
View SamplesThe goal of this study was to identify signaling molecules downstream of CXCR4 in breast cancer cells. For this purpose, we sorted CXCR4-positive and CXCR4-negative cells from MDA-MB-231 breast cancer cell line by flow cytometry and performed microarrays analysis.
ITF2 is a target of CXCR4 in MDA-MB-231 breast cancer cells and is associated with reduced survival in estrogen receptor-negative breast cancer.
Specimen part, Cell line, Treatment
View Samples