This SuperSeries is composed of the SubSeries listed below.
Comparison of gene expression data from human and mouse breast cancers: identification of a conserved breast tumor gene set.
No sample metadata fields
View SamplesThe aim of our work was the comparison of human and mouse gene expression data and to identify a conserved breast tumor gene set. The results encourage the usefulness of transgenic mice as a model for human breast cancer formation and therapy.
Comparison of gene expression data from human and mouse breast cancers: identification of a conserved breast tumor gene set.
No sample metadata fields
View SamplesSp1 and Sp3 belong to the Specificity proteins (Sp)/Krüppel-like transcription factor family. They are closely related, ubiquitously expressed and recognize G-rich DNA motifs. They are thought to regulate generic processes such as cell cycle and growth control, metabolic pathways and apoptosis. Ablation of Sp1 or Sp3 in mice is lethal, and combined haploinsufficiency results in hematopoietic defects during the fetal stages. Here, we show that in adult mice conditional ablation of either Sp1 or Sp3 has minimal impact on hematopoiesis, while the simultaneous loss of Sp1 and Sp3 results in severe macrothrombocytopenia and platelet dysfunction. We employed flow cytometry, cell culture and electron microscopy and show that although megakaryocyte numbers are normal in bone marrow and spleen, they display a less compact demarcation membrane system and a striking inability to form proplatelets. Through megakaryocyte transcriptomics and platelet proteomics we identified several cytoskeleton-related proteins and downstream effector kinases, including Mylk, that were downregulated upon Sp1/Sp3 depletion, providing an explanation for the observed defects in megakaryopoiesis. We show that Mylk is required for proplatelet formation and stabilization and for ITAM-receptor mediated platelet aggregation. Our data highlights the specific vs generic role of these ubiquitous transcription factors in the highly specialized megakaryocytic lineage. Overall design: Megakaryocyte mRNA profiles of Sp1fl/fl::Sp3fl/fl (WTlox) and Pf4-Cre::Sp1fl/fl::Sp3fl/fl (dKO) mice were generated by deep sequencing, in triplicate.
Sp1/Sp3 transcription factors regulate hallmarks of megakaryocyte maturation and platelet formation and function.
No sample metadata fields
View SamplesThe invasion of activated fibroblasts represents a key pathomechanism in fibrotic diseases, carcinogenesis and metastasis. Here, invading fibroblasts contribute to fibrotic extracellular matrix (ECM) formation and the initiation, progression, or resistance of cancer, respectively. To construct a transcriptome-wide signature of fibroblast invasion, we used a multiplex phenotypic 3D invasion assay using murine lung fibroblasts. Microarray-based gene expression profiles of invading and non-invading fibroblasts were highly distinct: 1049 genes were differentially regulated (>1.5-fold). An unbiased pathway analysis (Ingenuity) identified a significant enrichment for the functional clusters invasion of cells, idiopathic pulmonary fibrosis (IPF) and metastasis. Particularly, matrix metalloprotease13 (MMP13), transforming growth factor (TGF)1, Caveolin1 (Cav1), Phosphatase and Tensin Homolog (Pten), and secreted frizzled-related protein1 (Sfrp1) were among the highest regulated genes. In silico analysis by Ingenuity predicted TGF1, epidermal growth factor (EGF), fibroblast growth factor2 (FGF2), and platelet-derived growth factor (PDGF)-BB to induce invasion. As such, these growth factors were tested in the 3D invasion assay and displayed a significant induction of invasion, thus validating the transcriptome profile. Accordingly, our transcriptomic invasion signature describes the invading fibroblast phenotype in unprecedented detail and provides a tool for future functional studies of cell invasion and therapeutic modulation thereof.
Validated prediction of pro-invasive growth factors using a transcriptome-wide invasion signature derived from a complex 3D invasion assay.
Sex
View SamplesAmyotrophic lateral sclerosis (ALS) is a fatal adult-onset neuromuscular disorder characterized by the selective degeneration of upper and lower motor neurons, progressive muscle wasting and paralysis. To define the full set of alterations in gene expression in skeletal muscle during the course of the disease, we performed high-density oligonucleotide microarray analysis of gene expression in hind limb skeletal muscles of sod1(G86R) mice, one of the existing transgenic models of ALS. To monitor denervation-dependent gene expression, we determined the effects of short-term acute denervation on the muscle transcriptome after sciatic nerve axotomy.
Gene profiling of skeletal muscle in an amyotrophic lateral sclerosis mouse model.
Sex, Age, Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesRats overexpressing the human renin and angiotensinogen genes die after seven weeks of end organ damage. They develop hypertension, heart hypertrophy and proteinuria.We compared terminal heart failure, these are indeed terminally ill to double transgenic animals suffering on hypertension, proteinuria and heart hypertrophy. In addition, Losartan-treated animals (10 mg/kg/d)showed similar physiological parameters (normotension, no proteinuria and no heart hypertrophy compared to control sprague dawley rats.
Cardiac gene expression profile in rats with terminal heart failure and cachexia.
No sample metadata fields
View SamplesDendritic cells (DCs) play a pivotal role in the regulation of the immune response. DC development and activation is finely orchestrated through transcriptional programs. GATA1 transcription factor is required for murine DC development and data suggests that it might be involved in the fine-tuning of the life span and function of activated DCs. We generated DC-specific Gata1 knockout mice (Gata1-KODC), which presented a 20% reduction of splenic DCs, partially explained by enhanced apoptosis. RNA-Seq analysis revealed a number of deregulated genes involved in cell survival, migration and function. DC migration towards peripheral lymph nodes was impaired in Gata1-KODC mice. Migration assays performed in vitro showed that this defect was selective for CCL21, but not CCL19. Interestingly, we show that Gata1-KODC DCs have reduced polysialic acid levels on their surface, which is a known determinant for the proper migration of DCs towards CCL21. Overall design: Dendritic cells from Gata1 knock-out or wild-type mice were stimulated with LPS of unstimulated (under steady state), 2 biological replicates each
GATA1-Deficient Dendritic Cells Display Impaired CCL21-Dependent Migration toward Lymph Nodes Due to Reduced Levels of Polysialic Acid.
No sample metadata fields
View SamplesMicroRNAs (miRNAs) are small RNAs that play important regulatory roles in many cellular pathways. MiRNAs associate with members of the Argonaute (Ago) protein family and bind to partially complementary sequences on mRNAs and induce translational repression or mRNA decay. MiRNA expression can be controlled by transcription factors and can therefore be cell type- or tissue-specific. Here we have analyzed miRNA expression profiles in murine monocyte-derived dendritic cells (DCs) and macrophages upon stimulation with LPS, LDL, eLDL and oxLDL to identify not only stimuli-specific miRNA, but also to identify a hierarchical miRNA system involving miR-155. For this, miR-155 knockout dendritic cells and macrophages were also sequenced using the same stimuli. Overall design: Sequencing of murine monocyte-derived dendritic cells and macrophages (each wild type and miR-155 knock out cells) matured and stimulated, respectively, by LPS, oxLDL, eLDL or LDL.
A miR-155-dependent microRNA hierarchy in dendritic cell maturation and macrophage activation.
Specimen part, Cell line, Subject
View SamplesType I IFN-signaling suppresses an excessive IFN-{gamma} response and prevents lung damage and chronic inflammation following Pneumocystis (PC)-infection and clearance in CD4 T cell-competent mice.
Type-I IFN signaling suppresses an excessive IFN-gamma response and thus prevents lung damage and chronic inflammation during Pneumocystis (PC) clearance in CD4 T cell-competent mice.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function.
Specimen part, Cell line
View Samples