RhoBTB2 is a novel Rho GTPase that undergoes loss, underexpression and mutation in breast and lung cancer. We have shown that we can mimic loss of RhoBTB2 through siRNA treatment of primary cells. We propose to perform comparative microarray analysis of primary lung cells to establish the identification of the gene targets of RhoBTb2 regulation.
The atypical Rho GTPase RhoBTB2 is required for expression of the chemokine CXCL14 in normal and cancerous epithelial cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
CREB3L1 is a metastasis suppressor that represses expression of genes regulating metastasis, invasion, and angiogenesis.
Specimen part, Cell line
View SamplesThe unfolded protein response (UPR) is activated in response to hypoxia-induced stress such as in the tumor microenvironment. This study examined the role of CREB3L1 (cAMP-responsive element-binding protein 3-like protein 1), a member of the UPR, in breast cancer development and metastasis. Initial experiments identified the loss of CREB3L1 expression in metastatic breast cancer cell lines compared to low- or non-metastatic cell lines. When metastatic cells were transfected with CREB3L1 they demonstrated reduced invasion and migration in vitro, as well as a significantly decreased ability to survive under non-adherent or hypoxic conditions. Interestingly, in an in vivo rat mammary tumor model, CREB3L1 expressing cells not only failed to form metastases compared to CREB3L1 null cells but regression of the primary tumors was seen in 70% of the animals as a result of impaired angiogenesis. Microarray and ChIP on Chip analyses identified changes in the expression of many genes involved in cancer development and metastasis, including a decrease in those involved in angiogenesis. These data suggest that CREB3L1 plays an important role in suppressing tumorgenesis and loss of expression is required for the development of a metastatic phenotype.
CREB3L1 is a metastasis suppressor that represses expression of genes regulating metastasis, invasion, and angiogenesis.
Specimen part, Cell line
View SamplesDrosophila males double transcription of their single X chromosome to equalize X-linked gene expression with females, which carry two X chromosomes. Increased transcription requires the Male-Specific Lethal (MSL) complex. One of the primary functions of the MSL complex is thought to be enrichment of H4Ac16 on the male X chromosome, a modification linked to elevated transcription. The roX1 and roX2 RNAs are essential but redundant components of the MSL complex. Simultaneous removal of both roX RNAs reduces MSL X-localization and leads to ectopic binding of these proteins at autosomal sites and to the chromocenter. Some H4Ac16 accumulates at these ectopic sites in roX1- roX2- males, suggesting the possibility of increased expression. The global effect of roX mutations on gene expression was measured by microarray analysis. We found that expression of the X chromosome was decreased by 26% in roX1- roX2- male larvae, supporting the involvement of roX RNAs in the up-regulation of X-linked genes. This finding is broadly comparable to reports of reduced X chromosome expression following msl2 RNAi knockdown in S2 cells. In spite of strong MSL binding and H4Ac16 accumulation at autosomal sites in roX1- roX2- males, enhanced gene expression could not be detected at these sites by microarray analysis or reverse northern blotting. Thus, failure to compensate X-linked genes, rather than inappropriate up-regulation of autosomal genes at ectopic sites of MSL binding, appears to cause male lethality upon loss of roX RNAs.
roX RNAs are required for increased expression of X-linked genes in Drosophila melanogaster males.
Sex
View SamplesCaenorhabditis elegans is a major eukaryotic experimental system employed to unravel a broad range of cellular and biological processes. Despite the many advantages of C. elegans, biochemical approaches to study tissue-specific gene expression in postembryonic stages are challenging. Here we report a novel experimental approach that enables the efficient determination of tissue-enriched transcriptomes by rapidly releasing nuclei from major tissues of postembryonic animals followed by fluorescence-activated nuclei sorting (FANS). Furthermore, we developed and applied a deep sequencing method, named 3'end-seq, which is designed to examine gene expression and identify 3' ends of transcripts using a small quantity of input RNA. In agreement with intestinal specific gene expression, promoter elements of highly expressed genes are enriched for GATA elements and their functional properties are associated with processes that are characteristic for the intestine. In addition, we systematically mapped pre-mRNA cleavage and polyadenylation sites, or polyA sites, including >3,000 sites that have previously not been identified. The analysis of nuclear mRNA revealed widespread alternative polyA site use in intestinally expressed genes. We describe several novel approaches that will be of significance to the analysis of tissue specific gene expression using small quantity RNA samples from C. elegans and beyond. Overall design: 3'end-seq of transcriptomes for input and sorted nuclei
Analysis of C. elegans intestinal gene expression and polyadenylation by fluorescence-activated nuclei sorting and 3'-end-seq.
Specimen part, Cell line, Subject
View Samples40 QC single cells multiplexed using the CEL-Seq protocol Overall design: 40 cells from the QC
Quantification of cell identity from single-cell gene expression profiles.
Age, Subject
View SamplesroX RNAs are involved in the chromosome-wide gene regulation that occurs during dosage compensation in Drosophila. Dosage compensation equalizes expression of X-linked and autosomal genes. Drosophila males increase transcription two-fold from their single X chromosome. This is mediated by the MSL complex, which is composed of the male-specific lethal (MSL) proteins and two noncoding roX RNAs, roX1 and roX2. Upon elimination of both roX transcripts, a global decrease of X-linked gene expression is observed in males. Expression of the genes on the entire 4th chromosome also decreased in the absence of both roX transcripts. roX1 RNA also presents in females in the early stages. To investigate the effect of loss of roX transcripts on gene expression in females, gene expression was analyzed by microarrays in roX1-roX2- female flies. To eliminate inconsistency caused by differences in genetic background, expression of roX1-roX2- females with females of virtually identical genetic background but carrying the [hsp83-roX1+] transgene were compared. Expression of any chromosome did not change in roX1-roX2- females. It was concluded that roX RNAs only effect in males .
Coordinated regulation of heterochromatic genes in Drosophila melanogaster males.
Sex
View SamplesThe Arabidopsis quiescent center (QC) is a small group of cells with low mitotic activity located at the center of the root stem cell niche. Its transcriptional profile was previously analyzed using two repeats of cells FACS isolated using the WOX5 marker.
Quantification of cell identity from single-cell gene expression profiles.
Specimen part
View SamplesmiRNAs are small non-coding RNAs that inhibit translation and promote mRNA decay. The levels of mature miRNAs are the result of different rates of transcription, processing, and turnover. The non-canonical polymerase Gld2 has been implicated in the stabilization of miR-122 possibly by catalyzing 3’ monoadenylation, however, there is little evidence that this relationship is one of cause and effect. Here, we biochemically characterize Gld2 involvement in miRNA monoadenylation and its effect on miRNA stability. We find that Gld2 directly monoadenylates and stabilizes specific miRNA populations in human fibroblasts and that sensitivity to monoadenylation-induced stability depends on nucleotides in the miRNA 3‘ end. These results establish a novel mechanism of miRNA stability and resulting post-transcriptional gene regulation. Overall design: Sequencing of miRNAs to assess amount and 3'' end monoadenylation state upon Gld2 knock-down.
Specific miRNA stabilization by Gld2-catalyzed monoadenylation.
Specimen part, Subject
View SamplesXenotransplantation holds the promise of providing an unlimited supply of donor organs for terminal patients with organ failure. The gal carbohydrate results in rejection of wild type pig grafts, however, chimerism established by expression of the GalT gene prior to transplantation in GalT knockout mice results in tolerance to Gal+ heart grafts.
Intragraft gene expression profile associated with the induction of tolerance.
No sample metadata fields
View Samples