Complement receptor 2negative (CR2/CD21) B cells have been found enriched in patients with autoimmune diseases and in common variable immunodeficiency (CVID) patients who are prone to autoimmunity. However, the physiology of CD21/lo B cells remains poorly characterized. We found that some rheumatoid arthritis (RA) patients also display an increased frequency of CD21/lo B cells in their blood. A majority of CD21/lo B cells from RA and CVID patients expressed germline autoreactive antibodies, which recognized nuclear and cytoplasmic structures. In addition, these B cells were unable to induce calcium flux, become activated, or proliferate in response to B-cell receptor and/or CD40 triggering, suggesting that these autoreactive B cells may be anergic. Moreover, gene array analyses of CD21/lo B cells revealed molecules specifically expressed in these B cells and that are likely to induce their unresponsive stage. Thus, CD21/lo B cells contain mostly autoreactive unresponsive clones, which express a specific set of molecules that may represent new biomarkers to identify anergic B cells in humans.
Complement receptor 2/CD21- human naive B cells contain mostly autoreactive unresponsive clones.
No sample metadata fields
View SamplesProtein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene segregates with most autoimmune diseases; its risk allele encodes overactive PTPN22 phosphatases that alter B cell receptor (BCR) signaling potentially involved in the regulation of central B cell tolerance. To assess whether PTPN22 risk allele affects the removal of developing autoreactive B cells, we tested by ELISA the reactivity of recombinant antibodies isolated from single B cells from asymptomatic healthy individuals carrying one or two PTPN22 risk allele(s). We found that new emigrant/transitional and mature naive B cells from PTPN22 risk allele carriers contained high frequencies of autoreactive clones compared to non-carrier control donors. Hence, a single PTPN22 risk allele has a dominant effect on altering autoreactive B cell counterselection, suggesting that early B cell tolerance checkpoint defects precede the onset of autoimmunity. In addition, gene array experiments comparing mature nave B cells from healthy individuals carrying or not PTPN22 risk allele(s) revealed that the strength of association of PTPN22 for autoimmunity, second in importance only to the MHC, may not only be due to BCR signaling alteration but also to the regulation of other genes, which themselves have also been identified as involved in the development of autoimmune diseases.
The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans.
Specimen part
View SamplesThe NuRD complex is generally thought to repress transcription at both hyper- and hypomethylated regions in the genome. In addition, the complex is involved in the DNA damage response. Here, we show that ZMYND8 bridges NuRD to a number of putative DNA-binding zinc finger proteins. The ZMYND8 MYND domain directly interacts with PPPL? motifs in the NuRD subunit GATAD2A. Furthermore, GATAD2A and GATAD2B exclusively form homodimers and they thus define mutually exclusive NuRD subcomplexes. ZMYND8 and MBD3 share a large number of genome-wide binding sites, mostly active promoters and enhancers. Depletion of ZMYND8 does not affect NuRD occupancy genome-wide and expression of NuRD/ZMYND8 target genes in steady-state asynchronous cells. However, ZMYND8 facilitates immediate recruitment of GATAD2A/NuRD to induced sites of DNA damage. These results thus show that a specific substoichiometric interaction with a NuRD subunit paralogue provides unique functionality to a distinct NuRD subcomplex. Overall design: RNA-seq samples for HeLa FRT-TO mock, ZMYND8KO, and ZMYND8KO-rescue cells
ZMYND8 Co-localizes with NuRD on Target Genes and Regulates Poly(ADP-Ribose)-Dependent Recruitment of GATAD2A/NuRD to Sites of DNA Damage.
Subject
View SamplesAims to look at the targets of the bHLH transcription factor in Arabidopsis roots.
A basic helix-loop-helix transcription factor controls cell growth and size in root hairs.
Specimen part
View SamplesBackground: Exercise has a positive effect on overall health. This study was performed to get an overview of the effects of mixed exercise training on skeletal muscl
Identification of human exercise-induced myokines using secretome analysis.
Sex, Age, Race
View SamplesNatural grape-juice fermentations involve the sequential development of different yeast species which strongly influence the chemical and sensorial traits of the final product. In the present study,we aimed to examine the transcriptomic response of Saccharomyces cerevisiae to the presence of Hanseniaspora guilliermondii wine fermentation.
Genomic expression program of Saccharomyces cerevisiae along a mixed-culture wine fermentation with Hanseniaspora guilliermondii.
Treatment, Time
View SamplesWe treated logarithmically growing cultures of E.coli with a sub-lethal dose of an antimicrobial arylamide compound (PMX 10070) and Polymyxin B sulfate to measure transcriptional responses in an effort to understand mechanism of action
Antibacterial mechanism of action of arylamide foldamers.
No sample metadata fields
View SamplesBackground: Exercising is know to have an effect on exercising skeletal muscle, but unkown is the effect on non-exercising skeletal muscle. Gene expression changes in the non-exercising skeletal muscle would point to a signalling role of skeletal muscle
Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle.
Sex, Age, Specimen part, Race, Subject, Time
View SamplesTo define and compare the genome-wide transcriptional signatures of Notch1+ cells in intestinal tumors and in normal ISCs we performed Affymetrix analyses of these two populations.
Lineage tracing of Notch1-expressing cells in intestinal tumours reveals a distinct population of cancer stem cells.
Specimen part
View SamplesLow concentrations of the dissolved leonardite humic acid HuminFeed (HF) prolonged the lifespan and enhanced the thermal stress resistance of the model organism Caenorhabditis elegans. Furthermore growth was impaired and reproduction delayed, effects which have also been identified in other polyphenolic monomers, including tannic acid, rosmarinic acid, and caffeic acid. Moreover, a chemical modification of HF (HF-HQ), which increases its phenolic/quinonoid moieties, magnified the biological impact on C. elegans. To gain a deep insight into the molecular basis of these effects, we performed global transcriptomics on young adult (3 d) and old adult (11 d) nematodes exposed to two concentrations of HF and young adults (3 d) exposed to two concentrations of HF-HQ.
The Nematode Caenorhabditis elegans, Stress and Aging: Identifying the Complex Interplay of Genetic Pathways Following the Treatment with Humic Substances.
Specimen part, Treatment
View Samples