While human embryonic stem cells (hESCs) are predisposed towards chromosomal aneploidities on 12, 17, 20 and X, rendering them susceptible to transformation, the specific genes expressed are not yet known. Here, by identifying the genes over expressed in pluripotent rhesus ESCs (nhpESCs) and comparing them to both their genetically-identical differentiated progeny (teratoma fibroblasts) as well as genetically-related differentiated parental cells (parental skin fibroblasts from whom gametes were used for ESC derivation), we find that some of those over expressed genes in nhpESCs cluster preferentially on rhesus chromosomes 16, 19, 20 and X, homologues of human chromosomes 17, 19, 16 and X respectively. Differentiated parental skin fibroblasts display gene expression profiles closer to nhpESC profiles than to teratoma cells, which are genetically identical to the pluripotent nhpESCs. Twenty over and under expressed pluripotency modulators, some implicated in neurogenesis, have been identified. The over expression of some of these genes discovered using pedigreed nhpESCs derived from prime embryos generated by fertile primates, which is impossible to perform with the anonymously donated clinically-discarded embryos from which hESCs are derived, independently confirms the importance of chromosome 17 and X regions in pluripotency and suggests specific candidates for targeting differentiation and transformation decisions.
Pluripotency genes overexpressed in primate embryonic stem cells are localized on homologues of human chromosomes 16, 17, 19, and X.
Specimen part
View SamplesPedigreed primate ESCs display homogeneous and reliable expression profiles.
Pedigreed primate embryonic stem cells express homogeneous familial gene profiles.
No sample metadata fields
View SamplesAn important but largely unmet challenge in understanding the mechanisms that govern formation of specific organs is to decipher the complex and dynamic genetic programs exhibited by the diversity of cell types within the tissue of interest. Here, we use an integrated genetic, genomic and computational strategy to comprehensively determine the molecular identities of distinct myoblast subpopulations within the Drosophila embryonic mesoderm at the time that cell fates are initially specified. A compendium of gene expression profiles was generated for primary mesodermal cells purified by flow cytometry from appropriately staged wild-type embryos and from twelve genotypes in which myogenesis was selectively and predictably perturbed. A statistical meta-analysis of these pooled datasetsbased on expected trends in gene expression and on the relative contribution of each genotype to the detection of known muscle genesprovisionally assigned hundreds of differentially expressed genes to particular myoblast subtypes. Whole embryo in situ hybridizations were then used to validate the majority of these predictions, thereby enabling true positive detection rates to be estimated for the microarray data. This combined analysis reveals that myoblasts exhibit much greater gene expression heterogeneity and overall complexity than was previously appreciated. Moreover, it implicates the involvement of large numbers of uncharacterized, differentially expressed genes in myogenic specification and subsequent morphogenesis. These findings also underscore a requirement for considerable regulatory specificity for generating diverse myoblast identities. Finally, to illustrate how the developmental functions of newly identified myoblast genes can be efficiently surveyed, a rapid RNA interference assay that can be scored in living embryos was developed and applied to selected genes. This integrated strategy for examining embryonic gene expression and function provides a substantially expanded framework for further studies of this model developmental system.
An integrated strategy for analyzing the unique developmental programs of different myoblast subtypes.
No sample metadata fields
View SamplesThe forkhead O transcription factors (FOXO) integrate a range of extracellular signals including growth factor signaling, inflammation, oxidative stress and nutrient availability, to substantially alter the program of gene expression and modulate cell survival, cell cycle progression, and many cell-type specific responses yet to be unraveled. Naive antigen-specific CD8+ T cells undergo a rapid expansion and arming of effector function within days of pathogen exposure, but in addition, by the peak of expansion, they form precursors to memory T cells capable of self-renewal and indefinite survival.
Differentiation of CD8 memory T cells depends on Foxo1.
Specimen part
View SamplesStudy on selective vulnerability of certain brain regions to oxidative stress. Here we selected 4 brain regions (hippocampal CA1 and CA3, cerebral cortex, and cerebellar granular layer) to study this phenomenon.
Genomic and biochemical approaches in the discovery of mechanisms for selective neuronal vulnerability to oxidative stress.
Specimen part
View SamplesRecent genome-wide association studies (GWAS) have identified a number of novel genetic associations with complex human diseases. In spite of these successes, results from GWAS generally explain only a small proportion of disease heritability, an observation termed the missing heritability problem. Several sources for the missing heritability have been proposed, including the contribution of many common variants with small individual effect sizes, which cannot be reliably found using the standard GWAS approach. The goal of our study was to explore a complementary approach, which combines GWAS results with functional data in order to identify novel genetic associations with small effect sizes. To do so, we conducted a GWAS for lymphocyte count, a physiologic quantitative trait associated with asthma, in 462 Hutterites. In parallel, we performed a genome-wide gene expression study in lymphoblastoid cell lines (LCLs) from 96 Hutterites. We found significant support for genetic associations using the GWAS data when we considered variants near the 193 genes whose expression levels across individuals were most correlated with lymphocyte counts. Interestingly, these variants are also enriched with signatures of an association with asthma susceptibility, an observation we were able to replicate. The associated loci include genes previously implicated in asthma susceptibility, as well as novel candidate genes enriched for functions related to T cell receptor signaling and ATP synthesis. Our results, therefore, establish a new set of asthma susceptibility candidate genes. More generally, our observations support the notion that many loci of small effects influence variation in lymphocyte count and asthma susceptibility.
The combination of a genome-wide association study of lymphocyte count and analysis of gene expression data reveals novel asthma candidate genes.
Sex
View SamplesPowdery mildew, caused by the fungus Blumeria graminis (DC) Speer, is one of the most important foliar diseases of cereals worldwide. It is an obligate biotrophic parasite, colonising leaf epidermal cells to obtain nutrients from the plant cells without killing them. Syringolin A (sylA), a circular peptide secreted by the phytopathogenic bacterium Pseudomonas syringae pv. syringae, triggers a hypersensitive cell death reaction (HR) at infection sites when sprayed onto powdery mildew infected wheat which essentially eradicates the fungus. The rational was to identify genes whose expression was specifically regulated during HR, i.e. genes that might be involved in the switch of compatibility to incompatibility.<br></br>Powdery mildew-infected or uninfected plants were treated with syringolin two days after infection and plant material for RNA extraction was collected at 0.5, 1, 2, 4, 8, 12 hours after treatment (hat), resulting in an early (2 and 4 hat) and late pool (8 and 12 hat). Plant material that was uninfected prior to syringolin treatment was collected 8 and 12 hat (late pool of uninfected plant material), and 1 hat, respectively.
Transcriptional changes in powdery mildew infected wheat and Arabidopsis leaves undergoing syringolin-triggered hypersensitive cell death at infection sites.
Compound, Time
View SamplesBACKGROUND: miRNA have been shown to play an important role during immune-mediated diseases such as inflammatory bowel disease. The aim of this study was to assess differential expression of miRNA between uninfected and infected mice with Clostridium difficile strain VPI 10463 RESULTS: MicroRNA (miRNA)-sequencing analysis indicated that miR-146b, miR-1940, and miR-1298 were significantly overexpressed in colons of C. difficile-infected mice Overall design: Colon of uninfected and C.difficile-infected C57BL6/J WT mice were sampled at day 4 post-infection with Clostridium difficile VPI 10463. The infection dose was 107 cfu/mouse.
Modeling the role of peroxisome proliferator-activated receptor γ and microRNA-146 in mucosal immune responses to Clostridium difficile.
Specimen part, Cell line, Subject
View SamplesDevelopment, growth and adult survival are coordinated with available metabolic resources. The insulin/IGF and TOR signaling pathways relay nutritional status, thereby ascertaining that the organism responds appropriately to environmental conditions. MicroRNAs are short (21-23 nt) regulatory RNAs that confer specificity on the RNA-induced silencing complex (RISC) to inhibit a given set of mRNA targets. We profiled changes in miRNA expression during adult life in Drosophila melanogaster and determined that miR-277 is down-regulated with age. This miRNA controls branched-chain amino acid (BCAA) catabolism and the activity of the TOR kinase, a central growth regulator. Metabolite analysis suggests that the mechanistic basis may be an accumulation of BCKAs, rather than BCAAs, thus avoiding potentially detrimental consequences of increased branched chain amino acid levels on e.g. translational fidelity. Constitutive miR-277 expression as well as transgenic inhibition with a miRNA sponge construct shortens lifespan. Furthermore, constitutive miR-277 expression is synthetically lethal with reduced insulin signaling. Thus, optimal metabolic adaptation requires tuning of cellular BCAA catabolism by miR-277 to be concordant with systemic growth signaling. Overall design: Transgenic Drosophila melanogaster fruitflies carrying strong, ubiquitously expressed pre-miR277 hairpins (wt and two mutant versions) were dissected, total RNA was extracted from the abdomen and gel-purified for size selection (~18-30 nt). Digested plasmid samples were compared to those of circular plasmids and a nontransfected control. The purpose of this experiment was to demonstrate the extent of expression from mutant pre-miR277 hairpins, mut1 should abolish Drosha-processing while mut2 is conservative.
Drosophila miR-277 controls branched-chain amino acid catabolism and affects lifespan.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Epigenome-wide and transcriptome-wide analyses reveal gestational diabetes is associated with alterations in the human leukocyte antigen complex.
Specimen part
View Samples