DNA methylation is the net result of deposition by DNA methyltransferases (DNMT1, 3A and 3B) and removal by the Ten-Eleven Translocation 1-3 (TET1-3) family of proteins and/or passive loss by replication. The relative contribution of the individual enzymes and pathways is only partially understood. Here we comprehensively analyzed and mathematically simulated the dynamics of DNA de-methylation during the reprogramming of the hypermethylated serum-cultured mouse embryonic stem cells (ESCs) to the hypomethylated 2i-cultured ground state of mESC. We show that DNA demethylation readily occurs in TET[1-/-, 2-/-] ESCs with similar kinetics as their WT littermates. Vitamin C activation of TET causes accelerated and more profound DNA demethylation without markedly affecting reprogramming kinetics. We developed a mathematical model that highly accurately predicts the global level of 5methyl- and 5hydroxymethylcytosine during the transition. Modeling and experimental validation show that the concentration of DNMT3A and DNMT3B determines the steady state level of global DNA methylation and absence of DNMT3A/B even in continued presence of DNMT1 results in gradual loss of 5mC. Taken together, DNMT1 alone is insufficient to maintain DNA methylation but requires the action of DNMT3A/3B that act as a “dimmer switches”. Overall design: RNA-seq time series was performed during the early time phase of serum to 2i transition in the presence and absence of vitamin C (4h, 16h,24h, 32h), 1 replicate
Impairment of DNA Methylation Maintenance Is the Main Cause of Global Demethylation in Naive Embryonic Stem Cells.
No sample metadata fields
View SamplesThe aim of this study was to analyze gene response to a 10-week dietary intervention for weight loss in peripheral blood mononuclear cells of overweight/obese male children.
Peripheral blood mononuclear cell gene expression profile in obese boys who followed a moderate energy-restricted diet: differences between high and low responders at baseline and after the intervention.
Sex, Age, Specimen part, Treatment
View SamplesFTY720/Fingolimod, an FDA-approved drug for treatment of multiple sclerosis, has beneficial effects in the CNS that are not yet well understood, independent of its effects on immune cell trafficking. Here we show that FTY720 enters the nucleus where it is phosphorylated by sphingosine kinase 2 (SphK2) and nuclear FTY720-P that accumulates there, binds and inhibits class I histone deacetylases (HDACs) enhancing specific histone acetylations. FTY720 is also phosphorylated in mice and accumulates in various brain regions, including hippocampus, inhibits HDACs and enhances histone acetylation and gene expression programs associated with memory and learning leading to improvement of memory impairment independently of its immunosuppressive actions. Our data suggest that sphingosine-1-phosphate and SphK2 play specific roles in memory functions and that FTY720 may be a useful adjuvant therapy to facilitate extinction of aversive memories.
Active, phosphorylated fingolimod inhibits histone deacetylases and facilitates fear extinction memory.
Sex, Age, Specimen part, Treatment
View SamplesBy employing FOXA2-deficient mouse models coupled with LIF repletion, we reveal definitive roles of uterine glands in pregnancy establishment.These studies provide original evidence that uterine glands synchronize embryo-endometrial interactions, coordinate on-time embryo implantation, and impact stromal cell decidualization, thereby ensuring embryo viability, placental growth, and pregnancy success. Overall design: Uterine transcriptomes of control and Foxa2-deficient mice were generated on gestational day (GD) 4 and GD 6 following LIF-repletion. All time points were done in quadruplicates.
Uterine glands coordinate on-time embryo implantation and impact endometrial decidualization for pregnancy success.
Specimen part, Cell line, Subject
View SamplesSomatic mitochondrial DNA (mtDNA) mutations contribute to the pathogenesis of age-related disorders, including myelodysplastic syndromes (MDS). The accumulation of mitochondria harboring mtDNA mutations in patients with these disorders suggests a failure of normal mitochondrial quality-control systems. The mtDNA-mutator mice acquire somatic mtDNA mutations via a targeted defect in the proofreading function of the mtDNA polymerase, PolgA, and develop macrocytic anemia similar to that of patients with MDS. We observed an unexpected defect in clearance of dysfunctional mitochondria at specific stages during erythroid maturation in hematopoietic cells from aged mtDNA-mutator mice. Mechanistically, aberrant activation of mechanistic target of rapamycin signaling and phosphorylation of uncoordinated 51-like kinase (ULK) 1 in mtDNA-mutator mice resulted in proteasome mediated degradation of ULK1 and inhibition of autophagy in erythroid cells. To directly evaluate the consequence of inhibiting autophagy on mitochondrial function in erythroid cells harboring mtDNA mutations in vivo, we deleted Atg7 from erythroid progenitors of wildtype and mtDNA-mutator mice. Genetic disruption of autophagy did not cause anemia in wild-type mice but accelerated the decline in mitochondrial respiration and development of macrocytic anemia in mtDNA-mutator mice. These findings highlight a pathological feedback loop that explains how dysfunctional mitochondria can escape autophagy-mediated degradation and propagate in cells predisposed to somatic mtDNA mutations, leading to disease.
Mito-protective autophagy is impaired in erythroid cells of aged mtDNA-mutator mice.
Specimen part
View SamplesThe cell differentiation potential of 13-cis retinoic acid (RA) has not succeeded in the clinical treatment of glioblastoma (GBM) so far. However, RA may also induce the expression of disistance genes such as HOXB7 which can be suppressed by Thalidomide (THAL). Therefore, we tested if combined treatment with RA+THAL may inhibit growth of glioblastoma in vivo. Treatment with RA+THAL but not RA or THAL alone significantly inhibited tumour growth. The synergistic effect of RA and THAL was corroborated by the effect on proliferation of glioblastoma cell lines in vitro. HOXB7 was not upregulated but microarray analysis validated by real-time PCR identified four potential resistance genes (IL-8, HILDPA, IGFBPA, and ANGPTL4) whose upregulation by RA was suppressed by THAL. Furthermore, genes coding for small nucleolar RNAs (snoRNA) were identified as a target for RA for the first time, and their upregulation was maintained after combined treatment. Pathway analysis showed upregulation of the Ribosome pathway and downregulation of pathways associated with proliferation and inflammation. Combined treatment with RA + THAL delayed growth of GBM xenografts and suppressed putative resistance genes associated with hypoxia and angiogenesis. This encourages further pre-clinical and clinical studies of this drug combination in GBM.
Inhibition of 13-cis retinoic acid-induced gene expression of reactive-resistance genes by thalidomide in glioblastoma tumours in vivo.
Cell line, Treatment
View SamplesCirculating microvesicles (MVs) have been described as important players in cell-to-cell communication carrying biological information both in normal and pathologic condition. MVs released by cancer cells may incorporate biomolecules such as active lipids, proteins and RNA, which can be delivered and internalized by recipient cells potentially altering gene expression of receiving cells eventually impacting disease progression. In this study, we took advantage of a leukemia in vitro model to investigate MVs as vehicles of protein coding messages. Leukemic cell lines (K562, REH and SHI-1) carrying recurrent translocations were analyzed. In the leukemic cells these translocations are transcribed into oncogenic fusion transcripts. Here, using gene expression microarrays we monitored leukemic fusion transcripts as hallmarks of leukemic cells transcriptome to track mRNA transfer from parental cells to MVs. Transcriptome analysis of K562 cells and released MVs disclosed MVs as not just small scale cells. In fact, a number of transcripts related to membrane activity, cell surface receptors and extracellular communication were enriched in the MVs pool. On the other hand, sets of transcripts related to the basal cellular functions and transcripts of the BCR-ABL oncogenic pathway downstream of the fusion protein were detected in MVs as well as in parental K562 cells. Moreover, through co-culture analyses uptake of leukemic MVs in receiving cells was confirmed and an MV-dosage dependent increase of target cell proliferation was demonstrated.
Expression Profiling of Circulating Microvesicles Reveals Intercellular Transmission of Oncogenic Pathways.
Cell line
View SamplesLoss of muscle mass occurs in a variety of diseases including cancer, chronic heart failure, AIDS, diabetes and renal failure, often aggravating pathological progression. Preventing muscle wasting by promoting muscle growth has been proposed as a possible therapeutic approach. Myostatin is an important negative modulator of muscle growth during myogenesis and myostatin inhibitors are attractive drug targets. However, the role of the myostatin pathway in adulthood and the transcription factors involved in the signaling are unclear. Moreover recent results confirm that other TGF members control muscle mass. Using genetic tools we perturbed this pathway in adult myofibers, in vivo, to characterize the downstream targets and their ability to control muscle mass. Smad2 and Smad3 are the transcription factors downstream of myostatin/TGF and induce an atrophy program which is MuRF1 independent and requires FoxO activity. Furthermore Smad2/3 inhibition promotes muscle hypertrophy independent of satellite cells but partially dependent of mTOR signalling. Thus myostatin and Akt pathways cross-talk at different levels. These findings point to myostatin inhibitors as good drugs to promote muscle growth during rehabilitation especially when they are combined with IGF1-Akt activators.
Smad2 and 3 transcription factors control muscle mass in adulthood.
Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
ERα-dependent E2F transcription can mediate resistance to estrogen deprivation in human breast cancer.
Specimen part, Cell line, Treatment
View SamplesA significant fraction of breast cancers exhibit de novo or acquired resistance to estrogen deprivation. To model resistance to aromatase inhibitor (AI) therapy, long-term estrogen-deprived (LTED) derivatives of MCF-7 and HCC-1428 cells were generated through culture for 3 and 7 months under hormone-depleted conditions, respectively. These LTED cells showed sensitivity to the ER downregulator fulvestrant under hormone-depleted conditions, suggesting continued dependence upon ER signaling for hormone-independent growth. To evaluate the role of ER in hormone-independent growth, LTED cells were treated +/- 1 uM fulvestrant x 48 h before RNA was harvested for gene expression analysis.
ERα-dependent E2F transcription can mediate resistance to estrogen deprivation in human breast cancer.
Specimen part, Cell line, Treatment
View Samples