This SuperSeries is composed of the SubSeries listed below.
Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans.
No sample metadata fields
View SamplesAnalysis of the transcriptional response to viral infection in C.elegans.
Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans.
No sample metadata fields
View SamplesAttempt to identify small non-coding RNAs that change in levels as a result of viral infection of C.elegans Overall design: Small non-coding RNA (18-30nt) was extracted from animals either infected with Orsay virus or uninfected as indicated.
Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans.
Cell line, Subject
View SamplesWe generated animals carrying a genomically integrated mir-124 promoter::gfp transgene and identified mir-124 promoter::GFP labelled cells as a subset of the C. elegans sensory neurons. We used fluorescence activated cell sorting (FACS) to isolate four distinct cell populations: mir-124 expressing (GFP+) and non-expressing (GFP-) cells from both wild-type and mutant animals. RNA samples obtained from the four cell populations were used for Affymetrix gene expression analysis to study the effect of mir-124 deletion on the transcriptome of mir-124 expressing (GFP+) and non-expressing (GFP-) cells.
The microRNA miR-124 controls gene expression in the sensory nervous system of Caenorhabditis elegans.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Function, targets, and evolution of Caenorhabditis elegans piRNAs.
Specimen part
View SamplesSmall non-coding RNAs (sncRNAs) have been proposed as potential vectors of the interface between genes and environment. Here, we report that environmental conditions involving traumatic stress in early life, alter miRNA and piRNA composition in sperm of adult males in mice. Overall design: Examination of small RNA content of sperm from males, that experienced early chronic stress during their first two weeks of life versus small RNA content of sperm from control males.
Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice.
Sex, Disease, Cell line, Subject
View SamplesAn attempt to identify small non-coding RNAs that change with increasing generations after becoming homozygous for the loss of PRG-1 Overall design: Small non-coding RNA (18-30nt) was extracted from animals the indicated number of generations after homozygosity was established
Reduced insulin/IGF-1 signaling restores germ cell immortality to Caenorhabditis elegans Piwi mutants.
Specimen part, Cell line, Subject
View Samplessmall RNA libraries from total RNA isolated from young adult animals Overall design: Wild-type and rem-1 mutant animals were used for RNA isolation. Regular libraries were made using adaptor ligations at both ends. In addition, librraies were made from oxidised and TAP treated RNA.
Differential impact of the HEN1 homolog HENN-1 on 21U and 26G RNAs in the germline of Caenorhabditis elegans.
Cell line, Subject
View SamplesRepetitive sequences derived from transposons make up a large fraction of eukaryotic genomes and must be silenced to protect genome integrity. Repetitive elements are often found in heterochromatin; however, the roles and interactions of heterochromatin proteins in repeat regulation are poorly understood. Here we show that a diverse set of C. elegans heterochromatin proteins act together with the piRNA and nuclear RNAi pathways to silence repetitive elements and prevent genotoxic stress in the germ line. Mutants in genes encoding HPL-2/HP1, LIN-13, LIN-61, LET-418/Mi-2, and H3K9me2 histone methyltransferase MET-2/SETDB1 also show functionally redundant sterility, increased germline apoptosis, DNA repair defects, and interactions with small RNA pathways. Remarkably, fertility of heterochromatin mutants could be partially restored by inhibiting cep-1/p53, endogenous meiotic double strand breaks, or the expression of MIRAGE1 DNA transposons. Functional redundancy among these factors and pathways underlies the importance of safeguarding the genome through multiple means. Overall design: Synchronized, starved L1 stage worms were grown on NGM plates under one of two conditions. Condition 1: growth was at 20°C (hpl-2, let-418, lin-61, met-2 set-25, and wild-type N2) until the L4 stage and then worms were shifted to 25°C for 15-18 hours until they reached young adult stage. Condition 2: growth was at 15°C (lin-13, prg-1, nrde-2, nrde-2; let-418, and wild-type N2) until the L4 stage, and then worms were shifted to 25°C for 15-18 hours until they reached young adult stage. Worms were then washed off plates, flash frozen in liquid nitrogen, and stored at -80°C until use. RNA was extracted from frozen worms using TriPure (Roche). RNA was purified with Zymo Research RNA Clean and Concentrator-5 (Cambridge Bioscience) following DNase I digestion. Ribosomal RNA was depleted using Ribo-Zero rRNA Removal Kit (Human/Mouse/Rat) (Illumina). Libraries were prepared using the NEBNext Ultra Directional RNA Library Prep Kit for Illumina (New England Biolabs). Two biological replicates were prepared for each strain.
A team of heterochromatin factors collaborates with small RNA pathways to combat repetitive elements and germline stress.
Specimen part, Subject
View SamplesC. elegans has served as a laboratory model organism due to its ease of manipulation and the availability of both forward and reverse genetics. In recent years, efforts to study host-pathogen interactions in C. elegans have increased. For example, analysis of infections by bacteria such as Pseudomonas, Salmonella or Serratia has revealed the existence of innate immune pathways in C. elegans that are also conserved in vertebrates. To date, there has been no natural virus infection reported in C. elegans or C. briggsae. Here we describe evidence of natural virus infection in wild isolates of both C. elegans and C. briggsae. Two highly divergent but related RNA viruses in the family Nodaviridae, tentatively named Orsay nodavirus and Santeuil nodavirus, were detected and their genomes partially sequenced. Infected worm lysates passed through 0.2 um filters could be used to infect uninfected worms, which could be further passaged for many generations. Furthermore, the viruses were subject to processing by the RNAi machinery as evidenced by the detection of virally derived small RNAs. Infection of mutant worms defective in small RNA pathways yielded more robust levels of viral RNA as compared to infection of isogenic N2 reference worms. These data demonstrate that nodaviruses are natural parasites of nematodes in the wild. Further study of the interactions between these viruses and nematodes is likely to provide insight into the natural ecology of nematodes and may reveal novel innate immune mechanisms that respond to viral infection. Overall design: Two small RNA libraries (18-30 nt) from nodavirus-infected and cured C. elegans wild isolate JU1580 were sequenced on the Illumina Genome Analyzer II platform. Samples were treated with tobacco acid pyrophosphatase to allow cloning of small RNA molecules with 5'-triphosphates. Each sample was labelled with a unique four base pair barcode and libraries were multiplexed together with a third library (not included in this submission). The multiplexed libraries were sequenced in triplicate.
Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses.
Subject
View Samples