Gene expression profile of in vitro differentiated control and CD33 KO CD34+ cells (with 70-85% CD33 KO) were analyzed by RNA-seq to exclude any major impact of CD33 loss on downstream gene expression Overall design: Primary CD34+ cells were treated with CRISPR/Cas9 to disrupt the CD33 gene and grown in culture for 5-7 days prior to analysis; mRNA profile was compared to control cells from the same donor that were also treated with Cas9 and a control gRNA; 5 different donors were evaluated (CD33 KO/control for each = total 10 samples)
Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia.
Subject
View SamplesCells adapt to environmental stressors such as heat shock and extracellular acidosis through formation of nuclear membrane-less compartments called Amyloid bodies (A-bodies). Stressors activate formation of Amyloid bodies (A-bodies) via induction of ribosomal intergenic spacer RNA (rIGSRNA). RNA-seq on non-ribosome depleted RNA from human MCF7 cells exposed to heat shock (43C, 30 minutes) revealed the heat shock-specific expression profile of rIGSRNA. Overall design: Expression profile of the ribosomal intergenic spacer (i.e. rIGSRNA) in cells exposed to heat shock
Stress-Induced Low Complexity RNA Activates Physiological Amyloidogenesis.
Specimen part, Disease, Cell line, Treatment, Subject
View SamplesTo identify genes regulated by Rx3 during optic vesicle morphogenesis, adult zebrafish carriers of a null rx3 mutation were mated. Before 13 hours post fertilization (hpf), the earliest time point at which optic vesicle evagination phenotypes could be reliably detected, offspring were phenotypically separated into pools comprising of mutants with an absence of optic vesicles or siblings exhibiting a wild-type phenotype. Three replicates of pooled RNA samples from 13 hpf eyeless mutants (rx3-/-) or phenotypically wild-type siblings (rx3+/+ or rx3+/-), and one replicate of 13 hpf wild-type zebrafish larva were collected for whole transcriptome sequencing. Overall design: Whole transcriptome sequencing (RNA-seq) was performed on zebrafish rx3-/- mutants, wild-type siblings and wild-type AB strains at 13 hpf
Genes and signaling networks regulated during zebrafish optic vesicle morphogenesis.
No sample metadata fields
View SamplesCombinatorial actions of relatively few transcription factors control hematopoietic differentiation. To investigate this process in erythro-megakaryopoiesis, we correlated the genome-wide chromatin occupancy signatures of four master hematopoietic transcription factors (GATA1, GATA2, TAL1, and FLI1) and three diagnostic histone modification marks with the gene expression changes that occur during development of primary cultured megakaryocytes (MEG) and primary erythroblasts (ERY) from murine fetal liver hematopoietic stem/progenitor cells. We identified a robust, genome-wide mechanism of MEG-specific lineage priming by a previously described stem/progenitor cell-expressed transcription factor heptad (GATA2, LYL1, TAL1, FLI1, ERG, RUNX1, LMO2) binding to MEG-associated cis-regulatory modules (CRMs) in multipotential progenitors. This is followed by genome-wide GATA factor switching that mediates further induction of MEG-specific genes following lineage commitment. Interaction between GATA and ETS factors appears to be a key determinant of these processes. In contrast, ERY-specific lineage priming is biased toward GATA2-independent mechanisms. In addition to its role in MEG lineage priming, GATA2 plays an extensive role in late megakaryopoiesis as a transcriptional repressor at loci defined by a specific DNA signature. Our findings reveal important new insights into how ERY and MEG lineages arise from a common bipotential progenitor via overlapping and divergent functions of shared hematopoietic transcription factors.
Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis.
Specimen part
View SamplesCombinatorial actions of relatively few transcription factors control hematopoietic differentiation. To investigate this process in erythro-megakaryopoiesis, we correlated the genome-wide chromatin occupancy signatures of four master hematopoietic transcription factors (GATA1, GATA2, SCL/TAL1 and FLI1) and three diagnostic histone modification marks with the gene expression changes that occur during development of primary megakaryocytes (MEG) and erythroblasts (ERY) from murine fetal liver hematopoietic stem/progenitor cells. We identified a robust, genome-wide mechanism of MEG-specific lineage priming by a previously described stem/progenitor cell-expressed transcription factor heptad (GATA2, LYL1, SCL/TAL1, FLI1, ERG, RUNX1, LMO2) binding to MEG-specific cis-regulatory modules in multipotential hematopoietic progenitors. This is followed by genome-wide GATA factor switching that mediates further induction of MEG-specific genes following lineage commitment. Interaction between GATA and ETS factors appears to be a key determinant of these processes. In contrast, ERY-specific lineage priming occurs is biased toward GATA2-independent mechanisms. In addition to its role in MEG lineage priming, GATA2 plays an extensive role in late megakaryopoiesis as a transcriptional repressor at loci defined by a specific DNA signature. Our findings reveal important new insights into how ERY and MEG lineages arise from a common bipotential precursor via overlapping and divergent functions of shared hematopoietic transcription factors.
Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis.
Specimen part
View SamplesERG activity was blocked using YK-4-279 in three subcutaneously implanted ERG+ (LuCaP 23.1, 86.2, and 35) and one ERG- (LuCaP 96) PDX. Tumor volume (TV), body weight (BW), serum prostate specific antigen (PSA), and overall survival (OS) were compared to vehicle treated controls. Changes in gene expression were assessed by RNASeq and tissue microarrays were constructed to assess necrosis, proliferation, apoptosis, microvessel density, and ERG expression. Overall design: RNA sequencing of tumors from from 16 animals (2 control, 2 treated from each of four patient derived xenograft lines) using Illumina HiSeq 2500.
Inhibition of ERG Activity in Patient-derived Prostate Cancer Xenografts by YK-4-279.
Sex, Treatment, Subject
View SamplesThe RPMI-8226 human multiple myeloma cell line was stably infected with either a validated shRNA against BMI1 or a control shRNA. RNA was prepared from these lines, +/- doxycycline induction and at various time points post-induction. Samples were hybridized on the Affymetrix U133plus2 human genome expression microarray.
The Polycomb group protein Bmi-1 is essential for the growth of multiple myeloma cells.
Cell line
View SamplesAlthough it is well known that stroke and head trauma are one of the high risk factors for the development of acquired epilepsy, the cellular mechanisms underlying the epileptogenesis is not well understood. Using rodent models of ischemic stroke and head trauma (partial cortical isolation, undercut), we comparatively analyzed transcription profiles between two different models to explore the commonality.
TGFβ signaling is associated with changes in inflammatory gene expression and perineuronal net degradation around inhibitory neurons following various neurological insults.
Sex, Specimen part, Treatment, Time
View SamplesFzd2 is a Wnt receptor expressed in the embryonic lung. We made a conditional knockout of Fzd2 to specifically address the role of signaling through Fzd2 in lung epithelial development.
Wnt ligand/Frizzled 2 receptor signaling regulates tube shape and branch-point formation in the lung through control of epithelial cell shape.
Specimen part
View SamplesBmi-1 and Mel-18 are close structural homologues that belong to the polycomb group (PcG) of transcriptional regulators of homeotic gene expression in development. They are believed to stably maintain repression of gene expression by altering the state of chromatin at specific promoters. A number of clinical and experimental observations have also implicated Bmi-1 in tumorigenesis and stem cell maintenance. Bmi-1 overexpression or amplification has been observed in a number of human malignancies, particularly in B-cell lymphomas, medulloblastomas and breast cancer. We report here that shRNA-mediated knock-down of either Bmi-1 or Mel-18 in human medulloblastoma DAOY cells results in the inhibition of proliferation, loss of clonogenic survival and anchorage-independent growth, and suppression of xenograft tumor formation in nude mice. Furthermore, overexpression of both Bmi-1 and Mel-18 significantly increased clonogenic survival of Rat1 fibroblasts. In contrast, stable downregulation of Bmi-1 or Mel-18 alone did not affect the growth of SK-OV-3 or U2OS cancer cell lines or normal human WI38 fibroblasts. Gene expression analysis of shRNA-expressing DAOY cells has demonstrated a significant overlap in the Bmi-1- and Mel-18-regulated genes and revealed novel gene targets under their control. Taken together, these results suggest that Bmi-1 and Mel-18 might have overlapping functions in human tumorigenesis.
Contribution of polycomb homologues Bmi-1 and Mel-18 to medulloblastoma pathogenesis.
No sample metadata fields
View Samples