Differences in the selective pressures experienced by males and females are believed to be ubiquitous in dioecious organisms and are expected to result in the evolution of sexually antagonistic alleles, thereby driving the evolution of sexual dimorphism. Negative genetic correlation for fitness between the sexes has been documented, however, the identity, number and location of loci causing this relationship are unknown.
The sexually antagonistic genes of Drosophila melanogaster.
Specimen part
View SamplesFive different mitochondrial strains were introgressed in male and female fruit flies with identical (w1118) nuclear genetic background.
Experimental evidence supports a sex-specific selective sieve in mitochondrial genome evolution.
Sex
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Sex-biased gene expression and sexual conflict throughout development.
Sex
View SamplesSex differences in gene expression throughout development are poorly understood, especially sex-specific expression of micro RNAs. However these patterns of gene expression could have important implications in our understanding of the underlying mechanics of sex differentiation and sexual conflict.
Sex-biased gene expression and sexual conflict throughout development.
Sex
View SamplesIntralocus sexual conflict, where males and females have different fitness optima for the same trait, has been suggested to potentially be resolved by genomic imprinting, whereby expression in offspring is altered according to parent-of-origin. However, this idea has not yet been empirically tested. Here, we designed an experimental evolution protocol in Drosophila melanogaster which enabled us to look for imprinting effects on the X-chromosome. We enforced father-to-son transmission of the X-chromosome for many generations, and compared fitness and gene expression levels between control males, males with a control X-chromosome that had undergone one generation of father-son transmission (CDX), and males with an X-chromosome that had undergone many generations of father-son transmission (MLX). Although fitness differences were consistent with lowered fitness of males with a paternally inherited X-chromosome, expression differences suggested that this was due to deleterious maternal effects rather than imprinting. We conclude that imprinting is unlikely to resolve intralocus sexual conflict in Drosophila melanogaster.
Epigenetics and sex-specific fitness: an experimental test using male-limited evolution in Drosophila melanogaster.
Sex, Specimen part, Treatment
View SamplesBackground The evolution of female choice mechanisms favouring males of their own kind is considered as crucial step during the early stages of speciation. However, although the genomics of mate choice may influence both the likelihood and speed of speciation, the identity and location of genes underlying assortative mating remain largely unknown.
Female Drosophila melanogaster gene expression and mate choice: the X chromosome harbours candidate genes underlying sexual isolation.
Age, Specimen part, Treatment
View SamplesPurpose: To identify the impact of 2''-FL supplementation on adaptive response following extensive intestinal resection. Methods: Transcriptomic profiles were obtained from mice undergoing ileocecal recection (8-10 week old male mice) and again at 8 weeks post-surgery. At the time of resection and again at 8 weeks post-op, small bowel samples were obtained from treatment and control animals and submitted for mRNA profiling. During these 8 weeks treatment animals (n=3) received 2''-FL supplementationion while controls (n=3) received only standard diet. Results: We observe enrichment in genes and pathways related to anti-microbial peptides, metabolism, and energy processing. Supplementation of 2''-FL increases energy availability and enhances the adaptive response. Overall design: Male C57BL/6 mice at 8 to 10 weeks of age were submitted to ileocecal recection. Following resection, half were supplemented with 2''-FL for 8 weeks; small bowels were obtained and submitted for mRNA profiling,
The human milk oligosaccharide 2'-fucosyllactose augments the adaptive response to extensive intestinal.
Sex, Specimen part, Cell line, Subject
View SamplesThe goal of this study is to compare transcriptional profiles of regulatory T cells and conventional CD4 T cells in human breast cancer to regulatory T cells and conventional CD4 T cells in normal breast parenchyma and in peripheral blood. Overall design: RNA sequencing of 2 different cell types in 3 different tissues
Regulatory T Cells Exhibit Distinct Features in Human Breast Cancer.
Specimen part, Subject
View SamplesVelo-cardio-facial syndrome/DiGeorge syndrome/22q11.2 deletion syndrome (22q11DS) patients have a submucous cleft palate, velo-pharyngeal insufficiency associated with hypernasal speech, facial muscle hypotonia and feeding difficulties. Inactivation of both alleles of mouse Tbx1, encoding a T-box transcription factor, deleted on 22q11.2, results in a cleft palate and a reduction or loss of branchiomeric muscles. To identify genes downstream of Tbx1 for myogenesis, gene profiling was performed on mandibular arches (MdPA1) from Tbx1+/+ and Tbx1-/- mouse embryos.
Tbx1 is required autonomously for cell survival and fate in the pharyngeal core mesoderm to form the muscles of mastication.
Specimen part
View SamplesVelo-cardio-facial syndrome/DiGeorge syndrome/22q11.2 deletion syndrome (22q11DS) patients have a submucous cleft palate, velo-pharyngeal insufficiency associated with hypernasal speech, facial muscle hypotonia and feeding difficulties. Inactivation of both alleles of mouse Tbx1, encoding a T-box transcription factor, deleted on 22q11.2, results in a cleft palate and a reduction or loss of branchiomeric muscles. To identify genes downstream of Tbx1 for myogenesis, gene profiling was performed on mandibular arches (MdPA1) from Tbx1+/+ and Tbx1-/- mouse embryos.
Tbx1 is required autonomously for cell survival and fate in the pharyngeal core mesoderm to form the muscles of mastication.
Specimen part
View Samples