Comparison of mRNA expression showed widespread changes in the circulating CD8+ but not CD4+ T-cells from patients with severe asthma. No changes were observed in the CD4+ and CD8+ T-cells in non-severe asthmatics versus healthy controls. Bioinformatics analysis showed that the changes in CD8+ T-cell mRNA expression were associated with multiple pathways involved in T-cell activation. As with mRNAs, we also observed widespread changes in expression of non-coding RNA species including natural antisense, pseudogenes, intronic long ncRNAs and long intergenic long ncRNAs in CD8+ T-cells from severe asthmatics. Measurement of the miRNA expression profile showed selective down-regulation of miR-28-5p in CD8+ T-cells and reduction of miR-146a and miR-146b in both CD4+ and CD8+ T-cells.
Transcriptome analysis shows activation of circulating CD8+ T cells in patients with severe asthma.
Sex, Age, Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
PGC-1β promotes enterocyte lifespan and tumorigenesis in the intestine.
Specimen part
View SamplesAnalysis of metabolic pathway gene expression. The hypothesis tested in the present study is to assess mRNA level changes in metabolic genes in intestinal tumors from APCmin mice overexpressing PGC-1 specifically in the intestine.
PGC-1β promotes enterocyte lifespan and tumorigenesis in the intestine.
Specimen part
View SamplesAnalysis of metabolic pathway gene expression. The hypothesis tested in the present study is to assess mRNA level changes in metabolic genes in enterocytes from intestine specific PGC-1 konckout mice.
PGC-1β promotes enterocyte lifespan and tumorigenesis in the intestine.
Specimen part
View SamplesMM1S cells have been cultured under normoxic and hypoxic conditions, and gene expression profiling has been performed using the Affymetrix Human Genome U133 Plus 2.0 array.
Metabolic signature identifies novel targets for drug resistance in multiple myeloma.
Cell line
View SamplesThe tumor microenvironment plays a critical role in cancer progression, but the precise mechanisms by which stromal cells influence the tumor epithelium are poorly understood. The signaling adapter p62 has been implicated as a positive regulator of epithelial tumorigenesis; however, its role in the stroma is unknown. We show here that p62 levels are reduced in the stroma of several tumors. Also, orthotopic and organotypic studies demonstrate that the loss of p62 in the tumor microenvironment or stromal fibroblasts resulted in increased tumorigenesis of epithelial prostate cancer cells. The mechanism involves the regulation of cellular redox through an mTORC1/c-Myc pathway of stromal glucose and amino acid metabolism. Inhibition of the pathway by p62 deficiency results in increased stromal IL-6 production, which is required for tumor promotion in the epithelial compartment. Thus, p62 is an anti-inflammatory tumor suppressor that acts through modulation of metabolism in the tumor stroma.
Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis.
Specimen part
View SamplesDecreased bile secretion in rodents by either ligation of the common bile duct or induction of cirrhosis causes changes in the small intestine, including bacterial overgrowth and translocation across the mucosal barrier. Oral administration of bile acids inhibits these effects. The genes regulated by FXR in ileum suggested that it might contribute to the enteroprotective actions of bile acids. To test this hypothesis, mice were administered either GW4064 or vehicle for 2 days and then subjected to bile duct ligation (BDL) or sham operation. After 5 days, during which GW4064 or vehicle treatment was continued, the mice were killed and their intestines were analyzed for FXR target gene expression.
Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor.
Sex, Treatment
View SamplesObstruction of bile flow results in bacterial proliferation and mucosal injury in the small intestine that can lead to the translocation of bacteria across the epithelial barrier and systemic infection. These adverse effects of biliary obstruction can be inhibited by administration of bile acids. Here we show that the farnesoid X receptor (FXR), a nuclear receptor for bile acids, induces genes involved in enteroprotection and inhibits bacterial overgrowth and mucosal injury in ileum caused by bile duct ligation. Mice lacking FXR have increased ileal levels of bacteria and a compromised epithelial barrier. These findings reveal a central role for FXR in protecting the distal small intestine from bacterial invasion and suggest that FXR agonists may prevent epithelial deterioration and bacterial translocation in patients with impaired bile flow. In this report we have examined the role of FXR in the ileum. We demonstrate that it plays a crucial role in preventing bacterial overgrowth and maintaining the integrity of the intestinal epithelium
Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor.
Sex, Compound
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Liver X receptors inhibit proliferation of human colorectal cancer cells and growth of intestinal tumors in mice.
Age, Specimen part
View SamplesChanges in gene expression profile of intestinal (ILEUM) Tumors from APCmin/+/VP16LXRa vs APCmin/+/VP16. The hypothesis tested in the present study was that LXRa overexpression influence cancer growth modulating lipid metabolism in cancer cells. Results provide the information that LXRa induces genes encoding proteins able to regulate cholesterol efflux.
Liver X receptors inhibit proliferation of human colorectal cancer cells and growth of intestinal tumors in mice.
Age, Specimen part
View Samples