The study entails novel bio-marker discovery of Tumor Aggressive Grade signature (TAGs) genes and their role in recurrence free survival of breast cancer (BC) patients. Current BC dataset was used for co-expression analysis of TAGs genes and their role in BC progression. Additionally, recent findings have suggested an importance of structural organization of sense-antisense gene pairs (SAGPs) for transcription, post-transcriptional and post-translational events and their associations with cancer and disease. We studied SAGPs in which both gene partners are protein encoding genes (coding-coding SAGPs), their role in human BC development and demonstrated their potential for BC stratification and prognosis. Based on gene expression and correlation analyses we identified the robust set of breast cancer-relevant SAGPs (BCR-SAGPs). We isolated and characterized the sense-antisense gene signature (SAGS) and evaluated its prognostic potential in various gene expression datasets comprising 1161 BC patients. The methods used included the Cox proportional survival analysis, statistical analysis of clinicopathologic parameters and differential gene expression. The SAGS was effective in identification of BC patients with the most aggressive disease. Independently, we validated the SAGS using 58 RNA samples of breast cancer tumors purchased from OriGene Technologies (Rockville, MD).
Sense-antisense gene-pairs in breast cancer and associated pathological pathways.
Age, Disease, Disease stage
View SamplesTranscription profiling by array of mouse male retinas to investigate IGF-I-induced chronic gliosis and retinal stress
Insulin-like growth factor I (IGF-I)-induced chronic gliosis and retinal stress lead to neurodegeneration in a mouse model of retinopathy.
Sex, Specimen part
View SamplesSRC-1 affects the expression of complex I of the mitochondrial electron transport chain, a set of enzymes responsible for the conversion of NADH to NAD(+). NAD(+) and NADH were subsequently identified as metabolites that underlie SRC-1's response to glucose deprivation. Knockdown of SRC-1 in glycolytic cancer cells abrogated their ability to grow in the absence of glucose consistent with SRC-1's role in promoting cellular adaptation to reduced glucose availability
Steroid receptor coactivator 1 is an integrator of glucose and NAD+/NADH homeostasis.
Cell line, Treatment
View SamplesWe used microarrays to unveil the gene expression alterations upon short-term HFD administration
Dietary alterations modulate susceptibility to Plasmodium infection.
Specimen part
View SamplesPurpose: We aimed to identify miRNAs which are induced by the Activin/Nodal effectors, P-Smad2/3, in order to further our understanding of how P-Smad2/3 controls downstream gene expression in mouse ES cells to regulate crucial biological processes. Methods: We used a previously developed Tetracycline-On (Tet-On) system (TAG1) to manipulate the levels of P-Smad2/3 in mouse ES cells and performed an Illumina deep-sequencing screen to identify miRNAs which followed the P-Smad2/3 pathway. Results: We filtered the deep-seq data to identify a list of 28 miRNAs which showed a >1.25 fold increase in response to P-Smad2/3 induction and a >1.25 fold decrease in response to P-Smad2/3 repression. Conclusions: Our study represents a comprehensive global profiling of miRNA expression in response to changes in P-Smad2/3 levels in mouse ES cells. Overall design: miRNA profiles of TAG1 cells which were untreated (control), SB-431541 treated (P-Smad2/3 repressed), or Dox treated (P-Smad2/3 induced), were generated using Illumina GAII.
TGF-β/Smad2/3 signaling directly regulates several miRNAs in mouse ES cells and early embryos.
Specimen part, Subject
View SamplesProtein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene segregates with most autoimmune diseases; its risk allele encodes overactive PTPN22 phosphatases that alter B cell receptor (BCR) signaling potentially involved in the regulation of central B cell tolerance. To assess whether PTPN22 risk allele affects the removal of developing autoreactive B cells, we tested by ELISA the reactivity of recombinant antibodies isolated from single B cells from asymptomatic healthy individuals carrying one or two PTPN22 risk allele(s). We found that new emigrant/transitional and mature naive B cells from PTPN22 risk allele carriers contained high frequencies of autoreactive clones compared to non-carrier control donors. Hence, a single PTPN22 risk allele has a dominant effect on altering autoreactive B cell counterselection, suggesting that early B cell tolerance checkpoint defects precede the onset of autoimmunity. In addition, gene array experiments comparing mature nave B cells from healthy individuals carrying or not PTPN22 risk allele(s) revealed that the strength of association of PTPN22 for autoimmunity, second in importance only to the MHC, may not only be due to BCR signaling alteration but also to the regulation of other genes, which themselves have also been identified as involved in the development of autoimmune diseases.
The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans.
Specimen part
View SamplesWe screened intronic microRNAs dysregulated in liver of obese mouse models to identify previously uncharacterized coding host genes that may contribute to the pathogenesis of obesity-associated insulin resistance and type 2 diabetes mellitus. Our approach identified the expression of Ectodysplasin A (Eda), the causal gene of X-linked hypohidrotic ectodermal dysplasia (XLHED; MIM 305100) was strongly increased in liver of obese mouse models both in rodents and humans.Eda expression in murine liver is controlled via PPAR? activation, increases in circulation and promotes JNK activation and inhibitory serine phosphorylation of IRS1 in skeletal muscle. Consistently, bi-directional modulation of hepatic Eda expression in mouse models affects systemic glucose metabolism with alterations of muscle insulin signaling, revealing a novel role of EDA as an obesity-associated hepatokine, which impairs insulin sensitivity in skeletal muscle. Overall design: Soleus muscle mRNA profiles of db/db mice at 3 weeks after injection of AAV encoding shRNA targeting mouse Eda or the control scrambled shRNA sequence at the titer of 2-3x10e10 particles/body.
A microRNA screen reveals that elevated hepatic ectodysplasin A expression contributes to obesity-induced insulin resistance in skeletal muscle.
Age, Specimen part, Subject
View SamplesMost autoreactive B cells are normally counterselected during early B cell development. To determine whether Toll-like receptors (TLRs) regulate the removal of autoreactive B lymphocytes, we tested the reactivity of recombinant antibodies from single B cells isolated from patients deficient for IL-1R-associated kinase (IRAK)-4, myeloid differentiation factor 88 (MyD88) and UNC-93B. Indeed, all TLRs except TLR3 require IRAK-4 and MyD88 to signal and UNC-93B-deficient cells are unresponsive to TLR3, TLR7, TLR8 and TLR9. All patients suffered from defective central and peripheral B cell tolerance checkpoints resulting in the accumulation of large numbers of autoreactive mature nave B cells in their blood. Hence, TLR7, TLR8, and TLR9 may prevent the recruitment of developing autoreactive B cells in healthy donors. Paradoxically, IRAK-4-, MyD88- and UNC-93B-deficient patients did not display autoreactive antibodies in their serum nor developed autoimmune diseases, suggesting that IRAK-4, MyD88 and UNC-93B pathway blockade may thwart autoimmunity in humans.
IRAK-4- and MyD88-dependent pathways are essential for the removal of developing autoreactive B cells in humans.
No sample metadata fields
View SamplesTotal, nascent and unlabeled RNA were prepared following 1h of labeling with 100 M 4-thiouridine and 3 replicates analyzed by Affymetrix Gene ST 1.0 arrays
Systematic analysis of viral and cellular microRNA targets in cells latently infected with human gamma-herpesviruses by RISC immunoprecipitation assay.
Cell line
View SamplesRIP-Chip was performed on DG75-eGFP, DG75-10/12, BCBL-1, BL41, BL41 B95.8 and Jijoye using anti-human Ago2 (11A9) antibodies. Anti-BrdU antibodies were used as controls for DG75-eGFP, DG75-10/12 and BCBL-1. Total RNA was used as control for BL41, BL41 B95.8 and Jijoye. Samples were analyzed on Affymetrix Gene ST 1.0 Arrays (2 independent biological replicates / sample)
Systematic analysis of viral and cellular microRNA targets in cells latently infected with human gamma-herpesviruses by RISC immunoprecipitation assay.
No sample metadata fields
View Samples