Depression is a leading cause of disease burden, yet current therapies fully treat <50% of affected individuals. Increasing evidence implicates epigenetic mechanisms in depression and antidepressant action. Here, we examined a possible role for the newly identified methylcytosine oxidase, ten eleven translocation protein 1 (TET1), in depression-related behavioral abnormalities. We show that chronic social defeat stress, an ethologically validated mouse model of depression, decreased Tet1 expression in nucleus accumbens (NAc), a key brain reward region, in stress susceptible mice only. Surprisingly, selective knockout of Tet1 in NAc neurons of adult mice produced antidepressant-like effects in several behavioral assays. To identify Tet1 targets that mediate these actions, we performed RNAseq on NAc after Tet1 knockout and found that immune-related genes are the most highly regulated. Interestingly, many of these genes are also upregulated in NAc of resilient mice after chronic social defeat stress. Together, these findings link Tet1 to stress responses and identify novel targets for future antidepressant drug discovery efforts. Overall design: mRNA was collected from TET1 loxp/loxp mouse nucleus accumbens 4 weeks after AAV-Cre injection with AAV-GFP as control. RNAseq was then performed.
Tet1 in Nucleus Accumbens Opposes Depression- and Anxiety-Like Behaviors.
Specimen part, Cell line, Subject
View SamplesCocaine-induced alterations in gene expression cause changes in neuronal morphology and behavior that may underlie cocaine addiction. We identified an essential role for histone 3 lysine 9 (H3K9) dimethylation and the lysine dimethyltransferase G9a in cocaine-induced structural and behavioral plasticity. Repeated cocaine administration reduced global levels of H3K9 dimethylation in the nucleus accumbens. This reduction in histone methylation was mediated through the repression of G9a in this brain region. To identify whether changes in H3K9me2 correlated with genome-wide alterations in gene expression in the NAc, we employed microarray analyses to examine gene expression profiles induced by a challenge dose of cocaine in animals with or without a history of prior cocaine exposure. Animals that had received repeated cocaine displayed dramatically increased gene expression 1 hour after a cocaine challenge in comparison to acutely treated animals. This increased gene expression still occurred in response to a cocaine challenge given after 1 week of withdrawal from repeated cocaine. These data suggest that repeated, but not acute, cocaine exposure results in persistent sensitized genomic responses to a cocaine challenge, indicating that sensitized behavioral responses to repeated cocaine are likely the result of G9a-dependent alterations in global transcriptional responses to cocaine.
Essential role of the histone methyltransferase G9a in cocaine-induced plasticity.
Specimen part
View SamplesTo study the gene expression profile of salivary glands with varying degrees of inflammation in Sjogren's and non Sjogren's patients
Chitinases in the salivary glands and circulation of patients with Sjögren's syndrome: macrophage harbingers of disease severity.
Specimen part, Disease
View SamplesDuring the course of adjuvant arthritis, maximal changes in gene expression were observed at the incubation phase. A major group of genes affected was related to immune activity. Tolerance induction by mycobacterial heat-shock protein 65 (Bhsp65), the disease-related antigen, caused upregulation of a large number of genes. These included immune activity genes as well as cell proliferation-related genes.
The gene expression profile of preclinical autoimmune arthritis and its modulation by a tolerogenic disease-protective antigenic challenge.
Specimen part, Disease, Disease stage
View SamplesWe used microarrays of eight different cell types in cortex to conduct specificity index analysis for detailed cell type specific molecular profile.
Layer 2/3 pyramidal cells in the medial prefrontal cortex moderate stress induced depressive behaviors.
Specimen part
View SamplesWe compared the seedling transcription profiles to determine the effects of loss-of-function of the BRX gene of Arabidopsis. BRX is required for optimal root growth. We compared seedlings of a loss-of-function line (brx) with its control background (Sav-0). Because the loss-of-function line was derived from introgression, a brx line that was complemented by a transgenic wild type copy of BRX was also included as a control. This line (rescued brx) allows the identification of expression differences that are due to introgression drag. See Mouchel et al. 2004, Genes & Dev. Vol. 18, p. 700 for a detailed description. We also compared to response of the different genotypes to the application of the phytohormones brassinolide (BL) and indole acetic acid (IAA)
BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth.
Age, Compound, Time
View Samples5 day RNAi treatment to knockdown Enigma, CG9006, a Drosophila mitochondrial protein with homology to acyl-CoA dehydrogenases.
Enigma, a mitochondrial protein affecting lifespan and oxidative stress response in Drosophila.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal-foetal interface during pregnancy.
Specimen part
View SamplesOur goal was to transcriptionally profile Prdm1+ cell lineages of maternal and embryonic origin in mid-gestation mouse placenta in order to study vascular mimicry and additional processes in the placenta. Overall design: Profiling of 61 single cells and 17 clusters of 2 or 3 cells chosen based on expression of Prdm1, a paternally inherited Prdm1-Venus fluorescent reporter, progenitor trophoblast marker Gjb3 and spiral artery trophoblast giant cell marker Prl7b1.
Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal-foetal interface during pregnancy.
Specimen part, Cell line, Subject
View SamplesExpression profiling of wild-type and Prdm1 null mouse trophoblast giant cell cultures using Illumina whole genome mouse V2 arrays.
Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal-foetal interface during pregnancy.
Specimen part
View Samples