ClC-2 is a broadly expressed Cl- channel of the CLC family of Cl- channels and transporters which is abundantly expressed in brain. Here it was proposed to participate in lowering the cytoplasmic Cl- concentration of neurons, a process that establishes an inhibitory response to the neurotransmitters GABA and glycine (Staley et al., 1996). Heterozygous mutations in CLCN2 (the gene encoding ClC-2) were recently reported in a few patients with three clinically distinct forms of epilepsy (Haug et al, 2003). However, the disruption of ClC-2 in mice (ClC-2 KO mouse) did not entail epilepsy (Bösl et al., 2001; Nehrke et al., 2002) but myelin vacuolation in fiber tracts of the central nervous system. We used a gene expression profiling of the ClC-2 KO mouse in brain to identify possible disease mechanism which cause the observed myelin phenotype. As these myelin vacuolation became apparent in the fiber tracts of ClC-2 KO cerebellum at P28 and increased with age, we analysed the cerebellum of ClC-2 KO mice at different postnatal ages, before (P14) and after (P35) the KO cerebellum has been affected by myelin vacuolation.
Leukoencephalopathy upon disruption of the chloride channel ClC-2.
Sex, Age, Specimen part, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Loss of the Hematopoietic Stem Cell Factor GATA2 in the Osteogenic Lineage Impairs Trabecularization and Mechanical Strength of Bone.
Cell line
View SamplesGATA2 is a transcription factor that is required for hematopoietic stem cell (HSC) differentiation. GATA2 is also expressed in mesenchymal cells and blocks differentiation of both white and brown adipocytes by interfering with C/EBP activity and PPAR expression. By studying genome-wide binding sites of endogenous GATA2 in mesenchymal stem cells (MSC), we discovered a previously unrecognized function of GATA2 in the regulation of skeletal development-related genes. In contrast to hematopoietic stem cells, canonical GATA2 binding motifs in MSCs co-localized with motifs for transcription factors of the FOX and HOX family, known regulators of skeletal development. Consistently, ectopic GATA2 expression in MSCs regulated many osteoblast-related genes. Ectopic GATA2 blocked, whereas GATA2 deletion enhanced differentiation of osteoblastic precursors. GATA2 expression inhibited bone morphogenetic protein (BMP)-2 induced SMAD1/5/8 activity, a pathway that drives osteoblastogenesis. MSC-specific deletion of GATA2 in mice affected both numbers and osteogenic potential of bone-residing precursors without disturbing normal skeletal development. In adult mice, MSC-specific GATA2 deficiency affected trabecular bone structure and its mechanical properties. blood phenotype? In summary, our study identified GATA2 as a novel regulator of osteoblast differentiation and bone morphology, suggesting a role of GATA2 in MSC lineage determination that goes beyond adipocyte differentiation.
Loss of the hematopoietic stem cell factor GATA2 in the osteogenic lineage impairs trabecularization and mechanical strength of bone.
No sample metadata fields
View SamplesRetinol Saturase (RetSat) is an oxidoreductase expressed at high levels in the hepatocyte fraction of liver.
Retinol saturase coordinates liver metabolism by regulating ChREBP activity.
No sample metadata fields
View SamplesThe use of microbiological cultures for diagnosing bacterial infections in young febrile infants have substantial limitations, including false positive and false negative cultures, and non-ideal turn-around times. Analysis of host genomic expression patterns (RNA biosignatures) in response to the presence of specific pathogens, however, may provide an alternate and potentially improved diagnostic approach. This study was designed to define bacterial and non-bacterial RNA biosignatures to distinguish these infections in young febrile infants.
Association of RNA Biosignatures With Bacterial Infections in Febrile Infants Aged 60 Days or Younger.
Sex, Age, Specimen part, Race
View SamplesThis SuperSeries is composed of the SubSeries listed below.
General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis.
No sample metadata fields
View Samples12-oxo-phytodienoic acid (OPDA) and phytoprostane A1 (PPA1) are cyclopentenone oxylipins that are formed via the enzymatic
General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis.
No sample metadata fields
View Samples12-Oxo-phytodienoic acid (OPDA) and several phytoprostanes are structurally related cyclopentenone oxylipins that can be formed via the enzymatic jasmonate pathway and a non-enzymatic, free radical-catalyzed pathway, respectively. To elucidate the biological activities of phytoprostanes in comparison to OPDA as well as the metabolism we performed genome-wide expression analysis.
General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis.
No sample metadata fields
View SamplesTo study the development and function of “natural-arising” T regulatory (nTreg) cells, we developed a novel nTreg model on pure nonobese diabetic background using epigenetic reprogramming via somatic cell nuclear transfer. On RAG1-deficient background, we found that monoclonal FoxP3+ CD4+ Treg cells developed in the thymus in the absence of other T cells. Adoptive transfer experiments revealed that the thymic niche is not a limiting factor in nTreg development. In addition, we showed that the T-cell receptor (TCR) ß-chain of our nTreg model was not only sufficient to bias T-cell development toward the CD4 lineage, but we also demonstrated that this TCR ß-chain was able to provide stronger TCR signals. This TCR-ß–driven mechanism would thus unify former per se contradicting hypotheses of TCR-dependent and -independent nTreg development. Strikingly, peripheral FoxP3- CD4+ T cells expressing the same TCR as this somatic cell nuclear transfer nTreg model had a reduced capability to differentiate into Th1 cells but were poised to differentiate better into induced nTreg cells, both in vitro and in vivo, representing a novel peripheral precursor subset of nTreg cells to which we refer to as pre-nTreg cells. Overall design: We performed RNA-Seq analysis to determine the transcriptional differences between monoclonal FoxP3GFP-positive and -negative CD4+ T cells from NOD.TCRab.FoxP3GFP.Rag-/- and compared it with polyclonal FoxP3GFP-positive and -negative CD4+ T cells from NOD.FoxP3GFP mice
Nuclear transfer nTreg model reveals fate-determining TCR-β and novel peripheral nTreg precursors.
No sample metadata fields
View SamplesNonsyndromic clefts of the palate and/or lip are common birth defects arising in about 1/700 live births worldwide. They are caused by multiple genetic and environmental factors, can only be corrected surgically and require complex post-operative care that imposes significant burdens on individuals and society. Our understanding of the molecular networks that control palatogenesis has advanced through studies on mouse genetic models of cleft palate. In particular, the transcription factor Pax9 regulates palatogenesis through the Bmp, Fgf and Shh pathways in mice. But there is still much to learn about Pax9's relationship with other signaling pathways in this process. Expression analyses and unbiased gene expression profiling studies offer a molecular explanation for the resolution of palatal defects by showing that Wnt and Eda/Edar-related genes are expressed in normal palatal tissues and that the Wnt and Eda/Edar signaling pathway is downstream of Pax9 in palatogenesis. Overall design: E13.5 mouse embryos palate were micro-dissceted, control and mutant samples were seperated and individually lyzed for the RNA extraction.
Small-molecule Wnt agonists correct cleft palates in <i>Pax9</i> mutant mice <i>in utero</i>.
Specimen part, Cell line, Treatment, Subject
View Samples