Acquired imatinib resistance in chronic myelogenous leukemia (CML) can be the consequence of mutations in the kinase domain of BCR-ABL or increased protein levels. However, as in other malignancies, acquired resistance to cytostatic drugs is a common reason for treatment failure or disease progression. As a model for drug resistance, we developed a CML cell line resistant to cyclophosphamide (CP). Using oligonucleotide arrays, we examined changes in global gene expression. Selected genes were also examined by real-time PCR and flow cytometry. Neither the parent nor the resistant lines had mutations in their ATP binding domain. Filtering genes with a low-base line expression, a total of 239 genes showed significant changes (162 up- and 77 down-regulated) in the resistant clone. Most of the up-regulated genes were associated with metabolism, signal transduction, or encoded enzymes. The gene for aldehyde dehydrogenase 1 was over-expressed more than 2000 fold in the resistant clone. BCR-ABL was expressed in both cell lines to a comparable extent. When exposed to the tyrosine kinase inhibitors imatinib and nilotinib, both lines were sensitive. In conclusion, we found multiple genetic changes in a CML cell line resistant to CP related to metabolism, signal transduction or apoptosis. Despite these changes, the resistant cells retained sensitivity to tyrosine kinase inhibitors.
Comparative gene expression analysis of a chronic myelogenous leukemia cell line resistant to cyclophosphamide using oligonucleotide arrays and response to tyrosine kinase inhibitors.
No sample metadata fields
View SamplesHsp90 is critical for regulation of the phenotype and functional activity of human T lymphocytes and natural killer (NK) cells.
Heat shock protein 90 is critical for regulation of phenotype and functional activity of human T lymphocytes and NK cells.
Specimen part, Treatment
View SamplesAbstract: Cellular senescence, an integral component of aging and cancer, arises in response to diverse triggers, including telomere attrition, macromolecular damage, and signaling from activated oncogenes. At present, senescent cells are identified by the combined presence of multiple traits, such as senescence-associated protein expression and secretion, DNA damage, and ß-galactosidase activity; unfortunately, these traits are neither exclusively nor universally present in senescent cells. To identify robust shared markers of senescence, we have performed RNA-sequencing analysis across 8 diverse models of senescence triggered in human diploid fibroblasts (WI-38, IMR-90) and endothelial cells (HUVEC, HAEC) by replicative exhaustion, exposure to ionizing radiation or doxorubicin, and expression of the oncogene HRASG12V. The intersection of the altered transcriptomes revealed 47 RNAs consistently elevated and 26 RNAs consistently reduced across all senescence models, including many protein-coding mRNAs and some long noncoding RNAs. We propose that these shared transcriptome profiles will enable the identification of senescent cells in vivo, the investigation of their roles in aging and malignancy, and the development of strategies to target senescent cells therapeutically. Overall design: Transcriptomic analysis of various cell line models of senescence and their respective controls
Transcriptome signature of cellular senescence.
Specimen part, Cell line, Treatment, Subject
View SamplesReliable clinical tests for predicting cancer chemotherapy response are not available and individual markers failed to correctly predict resistance against anticancer agents. We hypothesized that gene expression patterns attributable to chemotherapy-resistant cells can be used as a classification tool for chemoresistance and provide novel candidate genes involved in anthracycline resistance mechanisms. We contrasted the expression profiles of 4 different human tumor cell lines of gastric, pancreatic, colon and breast origin and of their counterparts resistant to the topoisomerase inhibitors daunorubicin or doxorubicin. We also profiled the sensitive parental cells treated with doxorubicin for 24h. We interrogated Affymetrix HGU133A and U95A arrays independently. We applied two independent methods for data normalization and used Prediction Analysis of Microarrays (PAM) for feature selection. In addition, we established data sets related to drug resistance by using a virtual array composed of features represented on both types of oligonucleotide arrays. We identified 71 candidate genes associated with doxorubicine/daunorubicine resistance. To validate the microarray data, we also analyzed the expression of 12 selected genes by quantitative RT-PCR or immunocytochemistry, respectively. While the comparison of drug-sensitive versus drug-resistant cells yields candidates associated with drug resistance, the 24h treatment of sensitive parental cells produced a distinct transcriptional profile related to short-term drug effects.
PSMB7 is associated with anthracycline resistance and is a prognostic biomarker in breast cancer.
No sample metadata fields
View SamplesReliable clinical tests for predicting cancer chemotherapy response are not available and individual markers failed to correctly predict resistance against anticancer agents. We hypothesized that gene expression patterns attributable to chemotherapy-resistant cells can be used as a classification tool for chemoresistance and provide novel candidate genes involved in anthracycline resistance mechanisms. We contrasted the expression profiles of 4 different human tumor cell lines of gastric, pancreatic, colon and breast origin and of their counterparts resistant to the topoisomerase inhibitors daunorubicin or doxorubicin. We also profiled the sensitive parental cells treated with doxorubicin for 24h. We interrogated Affymetrix HGU133A and U95A arrays independently. We applied two independent methods for data normalization and used Prediction Analysis of Microarrays (PAM) for feature selection. In addition, we established data sets related to drug resistance by using a virtual array composed of features represented on both types of oligonucleotide arrays. We identified 71 candidate genes associated with doxorubicine/daunorubicine resistance. To validate the microarray data, we also analyzed the expression of 12 selected genes by quantitative RT-PCR or immunocytochemistry, respectively. While the comparison of drug-sensitive versus drug-resistant cells yields candidates associated with drug resistance, the 24h treatment of sensitive parental cells produced a distinct transcriptional profile related to short-term drug effects.
PSMB7 is associated with anthracycline resistance and is a prognostic biomarker in breast cancer.
No sample metadata fields
View SamplesReliable clinical tests for predicting cancer chemotherapy response are not available and individual markers failed to correctly predict resistance against anticancer agents. We hypothesized that gene expression patterns attributable to chemotherapy-resistant cells can be used as a classification tool for chemoresistance and provide novel candidate genes involved in anthracycline resistance mechanisms. We contrasted the expression profiles of 4 different human tumor cell lines of gastric, pancreatic, colon and breast origin and of their counterparts resistant to the topoisomerase inhibitors daunorubicin or doxorubicin. We also profiled the sensitive parental cells treated with doxorubicin for 24h. We interrogated Affymetrix HGU133A and U95A arrays independently. We applied two independent methods for data normalization and used Prediction Analysis of Microarrays (PAM) for feature selection. In addition, we established data sets related to drug resistance by using a virtual array composed of features represented on both types of oligonucleotide arrays. We identified 71 candidate genes associated with doxorubicine/daunorubicine resistance. To validate the microarray data, we also analyzed the expression of 12 selected genes by quantitative RT-PCR or immunocytochemistry, respectively. While the comparison of drug-sensitive versus drug-resistant cells yields candidates associated with drug resistance, the 24h treatment of sensitive parental cells produced a distinct transcriptional profile related to short-term drug effects.
PSMB7 is associated with anthracycline resistance and is a prognostic biomarker in breast cancer.
No sample metadata fields
View SamplesLong noncoding RNAs (lncRNAs) have been found to regulate the expression of mRNAs with which they share partial complementarity. We sought to identify the mechanism through which the lncRNA OIP5-AS1, which is abundant in the cytoplasm, suppressed cell proliferation. Silencing of OIP5-AS1 in human cervical carcinoma cells revealed the appearance of many aberrant (monopolar, multipolar, misaligned) mitotic spindles. By biotin-oligomer affinity pulldown, proteomic, and bioinformatic analyses, we identified a subset of human cell cycle regulatory proteins encoded by mRNAs that were capable of interacting with OIP5-AS1. Further investigation revealed that GAK mRNA, which encodes a cyclin G-associated kinase important for mitotic progression, was a prominent target of OIP5-AS1. The interaction between these two transcripts led to a reduction in GAK mRNA stability and GAK protein abundance, as determined in cells in which OIP5-AS1 levels were increased or decreased. Importantly, the aberrant mitotic cell division seen after silencing OIP5-AS1 was partly rescued if GAK was simultaneously silenced. These findings indicate that the abnormal mitoses seen after silencing OIP5-AS1 was caused by an untimely rise in GAK levels and suggest that OIP5-AS1 suppresses cell proliferation at least in part by reducing GAK levels
LncRNA OIP5-AS1/cyrano suppresses GAK expression to control mitosis.
Specimen part, Disease, Disease stage, Cell line, Treatment
View SamplesWomen persistently infected with human papillomavirus (HPV) type 16 are at high risk for development of cervical intraepithelial neoplasia grade 3 or cervical cancer (CIN3+). We aimed to identify biomarkers for progression to CIN3+ in women with persistent HPV16 infection. In this prospective study, 11,088 women aged 2029 years were enrolled during 1991-1993, and re-invited for a second visit two years later. Cervical cytology samples obtained at both visits were tested for HPV DNA by Hybrid Capture 2 (HC2), and HC2-positive samples were genotyped by INNO-LiPA. The cohort was followed for up to 19 years via a national pathology register. To identify markers for progression to CIN3+, we performed microarray analysis on RNA extracted from cervical swabs of 30 women with persistent HPV16-infection and 11 HPV-negative women. After further validation, we found that high mRNA expression levels of TMEM45A, SERPINB5 and p16INK4a were associated with increased risk of CIN3+ in persistently HPV16-infected women.
TMEM45A, SERPINB5 and p16INK4A transcript levels are predictive for development of high-grade cervical lesions.
Specimen part, Disease, Disease stage
View SamplesThe ARV1-encoded protein mediates sterol transport from the endoplasmic reticulum (ER) to the plasma membrane. Yeast ARV1 mutants accumulate multiple lipids in the ER and are sensitive to pharmacological modulators of both sterol and sphingolipid metabolism. Using fluorescent and electron microscopy, we demonstrate sterol accumulation, subcellular membrane expansion, elevated lipid droplet formation and vacuolar fragmentation in ARV1 mutants. Motif-based regression analysis of ARV1 deletion transcription profiles indicates activation of Hac1p, an integral component of the UPR. Accordingly, we show constitutive splicing of HAC1 transcripts, induction of a UPR reporter and elevated expression of UPR targets in ARV1 mutants. IRE1, encoding the unfolded protein sensor in the ER lumen, exhibits a lethal genetic interaction with ARV1, indicating a viability requirement for the UPR in cells lacking ARV1. Surprisingly, ARV1 mutants expressing a variant of Ire1p defective in sensing unfolded proteins are viable. Moreover these strains also exhibit constitutive HAC1 splicing that interacts with DTT-mediated perturbation of protein folding. These data suggest a component of UPR induction in arv1? strains is distinct from protein misfolding. Decreased ARV1 expression in murine macrophages also results in UPR induction, particularly up-regulation of activating transcription factor-4, C/EBP homologous protein (CHOP) and apoptosis. Cholesterol loading or inhibition of cholesterol esterification further elevated CHOP expression in ARV1 knockdown cells. Thus, loss or down-regulation of ARV1 disturbs membrane and lipid homeostasis resulting in a disruption of ER integrity, one consequence of which is induction of the UPR.
Loss of subcellular lipid transport due to ARV1 deficiency disrupts organelle homeostasis and activates the unfolded protein response.
No sample metadata fields
View SamplesRoom temperature whole blood mRNA stabilization procedures, such as the PAX gene system, are critical for the application of transcriptional analysis to population-based clinical studies. Global transcriptome analysis of whole blood RNA using microarrays has proven to be challenging due to the high abundance of globin transcripts that constitute 70% of whole blood mRNA in the blood. This is a particular problem in patients with sickle-cell disease, secondary to the high abundance of globin-expressing nucleated red blood cells and reticulocytes in the circulation . In order to more accurately measure the steady state whole blood transcriptome in sickle-cell patients, we evaluated the efficacy of reducing globin transcripts in PAXgene stabilized RNA samples for genome-wide transcriptome analyses using oligonucleotide arrays. We demonstrate here by both microarrays and Q-PCR that the globin mRNA depletion method resulted in 55-65 fold reduction in globin transcripts in whole blood collected from healthy volunteers and sickle-cell disease patients. This led to an improvement in microarray data quality with increased detection rate of expressed genes and improved overlap with the expression signatures of isolated peripheral blood mononuclear (PBMC) preparations. The differentially modulated genes from the globin depleted samples had a higher correlation coefficient to the 112 genes identified to be significantly altered in our previous study on sickle-cell disease using PBMC preparations. Additionally, the analysis of differences between the whole blood transcriptome and PBMC transcriptome reveals important erythrocyte genes that participate in sickle-cell pathogenesis and compensation. The combination of globin mRNA reduction after whole-blood RNA stabilization represents a robust clinical research methodology for the discovery of biomarkers for hematologic diseases and in multicenter clinical trials investigating a wide range of nonhematologic disorders where fractionation of cell types is impracticable.
Characterization of whole blood gene expression profiles as a sequel to globin mRNA reduction in patients with sickle cell disease.
Specimen part, Subject
View Samples