Hsp90 is critical for regulation of the phenotype and functional activity of human T lymphocytes and natural killer (NK) cells.
Heat shock protein 90 is critical for regulation of phenotype and functional activity of human T lymphocytes and NK cells.
Specimen part, Treatment
View SamplesThe expression profiles of five human trunk level neural crest cell lines were determined on Affymetrix chips HG U133 Plus 2.0.
Epistasis between RET and BBS mutations modulates enteric innervation and causes syndromic Hirschsprung disease.
Sex, Specimen part
View SamplesRoom temperature whole blood mRNA stabilization procedures, such as the PAX gene system, are critical for the application of transcriptional analysis to population-based clinical studies. Global transcriptome analysis of whole blood RNA using microarrays has proven to be challenging due to the high abundance of globin transcripts that constitute 70% of whole blood mRNA in the blood. This is a particular problem in patients with sickle-cell disease, secondary to the high abundance of globin-expressing nucleated red blood cells and reticulocytes in the circulation . In order to more accurately measure the steady state whole blood transcriptome in sickle-cell patients, we evaluated the efficacy of reducing globin transcripts in PAXgene stabilized RNA samples for genome-wide transcriptome analyses using oligonucleotide arrays. We demonstrate here by both microarrays and Q-PCR that the globin mRNA depletion method resulted in 55-65 fold reduction in globin transcripts in whole blood collected from healthy volunteers and sickle-cell disease patients. This led to an improvement in microarray data quality with increased detection rate of expressed genes and improved overlap with the expression signatures of isolated peripheral blood mononuclear (PBMC) preparations. The differentially modulated genes from the globin depleted samples had a higher correlation coefficient to the 112 genes identified to be significantly altered in our previous study on sickle-cell disease using PBMC preparations. Additionally, the analysis of differences between the whole blood transcriptome and PBMC transcriptome reveals important erythrocyte genes that participate in sickle-cell pathogenesis and compensation. The combination of globin mRNA reduction after whole-blood RNA stabilization represents a robust clinical research methodology for the discovery of biomarkers for hematologic diseases and in multicenter clinical trials investigating a wide range of nonhematologic disorders where fractionation of cell types is impracticable.
Characterization of whole blood gene expression profiles as a sequel to globin mRNA reduction in patients with sickle cell disease.
Specimen part, Subject
View SamplesPreparation of Synaptosomes by density gradient and compare synaptically enriched mRNA to total homogenate transcriptome Overall design: In brief, mouse brains were homogenized in 5 ml homogenization buffer (0.32 M sucrose, 1 mM EDTA pH 7.4, 1 mM dithiothreitol, phenylmethanesulfonyl fluoride solution (Sigma, 93482-50ML-F), complete mini-protease inhibitor (Roche Diagnostics) for 10 sec using a polytron. The homogenate was centrifuged at 1,000g for 10 min at 4 °C yielding the nuclear fraction (Nuc) and the supernatant (Sup). The supernatant was centrifuged at 31,000g for 5 min at 4°C using a discontinuous Percoll gradient. The layer between 3% and 10% of Percoll were collected, washed in 30 ml of homogenization buffer and further centrifuged at 22,000 × g for 15 min at 4°CT. The pellet was resuspended in in EBC buffer (50 mM Tris-HCl pH 8.0, 120 mM NaCl and 0.5% NP-40) containing complete mini-protease inhibitor (Roche Diagnostics) and phosphatase inhibitor cocktail 1 and 2 (Sigma–Aldrich)) for Western blot analysis or lysis buffer for RNA extraction (GenElute Mammalian Total RNA Miniprep Kit, Sigma).
Mutations in NONO lead to syndromic intellectual disability and inhibitory synaptic defects.
No sample metadata fields
View SamplesReprogram-Seq leverages organ-specific cell atlas data with single-cell perturbation and computational analysis to predict, evaluate, and optimize TF combinations that reprogram a cell type of interest. Overall design: Focusing on the cardiac system, we performed Reprogram-Seq on P0 mouse heart cells to generate a reference transcriptomic map. Based on the reference map, we selected TF candidates and tests 1000s of TF cocktails for direct lineage conversion by scRNA-Seq.
Rational Reprogramming of Cellular States by Combinatorial Perturbation.
Specimen part, Subject
View SamplesReprogram-Seq leverages organ-specific cell atlas data with single-cell perturbation and computational analysis to predict, evaluate, and optimize TF combinations that reprogram a cell type of interest. Overall design: Focusing on the cardiac system, we performed Reprogram-Seq on P0 mouse heart cells to generate a reference transcriptomic map. Based on the reference map, we selected TF candidates and tests 1000s of TF cocktails for direct lineage conversion by scRNA-Seq.
Rational Reprogramming of Cellular States by Combinatorial Perturbation.
Specimen part, Subject
View SamplesReprogram-Seq leverages organ-specific cell atlas data with single-cell perturbation and computational analysis to predict, evaluate, and optimize TF combinations that reprogram a cell type of interest. Overall design: Focusing on the cardiac system, we performed Reprogram-Seq on P0 mouse heart cells to generate a reference transcriptomic map. Based on the reference map, we selected TF candidates and tests 1000s of TF cocktails for direct lineage conversion by scRNA-Seq. This series includes uninfected, non-transformed MEFs.
Rational Reprogramming of Cellular States by Combinatorial Perturbation.
Specimen part, Subject
View SamplesTo study effects of IFNalpha treatment on monocyte-derived macrophages which may influence susceptibility or resistance to HIV.
Interleukin-27 inhibition of HIV-1 involves an intermediate induction of type I interferon.
Specimen part
View SamplesReprogram-Seq leverages organ-specific cell atlas data with single-cell perturbation and computational analysis to predict, evaluate, and optimize TF combinations that reprogram a cell type of interest. Overall design: Focusing on the cardiac system, we performed Reprogram-Seq on P0 mouse heart cells to generate a reference transcriptomic map. Based on the reference map, we selected TF candidates and tests 1000s of TF cocktails for direct lineage conversion by scRNA-Seq.
Rational Reprogramming of Cellular States by Combinatorial Perturbation.
Specimen part, Subject
View SamplesReprogram-Seq leverages organ-specific cell atlas data with single-cell perturbation and computational analysis to predict, evaluate, and optimize TF combinations that reprogram a cell type of interest. Overall design: Focusing on the cardiac system, we performed Reprogram-Seq on P0 mouse heart cells to generate a reference transcriptomic map. Based on the reference map, we selected TF candidates and tests 1000s of TF cocktails for direct lineage conversion by scRNA-Seq. This series includes reprogrammed MEFs with Myod1, day 7.
Rational Reprogramming of Cellular States by Combinatorial Perturbation.
Specimen part, Cell line, Subject
View Samples