We performed RNA-Seq on PHF21A-deficient patient-dervied lymphoblasts as well as two unaffected individuals. Overall design: We performed RNA-Seq from patient-derived lymphoblast cells. Libraries were polyA-selected and strand-specific according to the protocol described in PMID: 25607527
Transcriptome Analysis Revealed Impaired cAMP Responsiveness in PHF21A-Deficient Human Cells.
Sex, Specimen part, Disease stage, Subject
View SamplesThe adipocytes functions as a central organ in the regulation of metabolic homeostasis. Factors which contribute to the adipocyte differentiation and function would be the promising targets to combat the obesity and associated metabolic disorders. The activating transcription factor 7 (ATF7), a stress-responsive chromatin regulator, has recently been shown to be involved in the energy metabolism; however, the underlying mechanisms are still unknown. Here, we show that ATF7 is required for adipocyte differentiation and it interacts with histone dimethyltransferase G9a in adipocyte to repress the interferon-stimulated genes (ISGs) expression, which suppresses adipogenesis. Ablation of ATF7 promotes the beige biogenesis and browning of inguinal white adipose tissue (iWAT). ATF7 binds to the transcription regulatory regions of Ucp1 gene, and silences it by maintaining the histone H3K9 dimethylation level. These results establish the multifunction of ATF7 in adipocyte and provide molecular insights into the epigenetic control of development and function of adipose tissues. Overall design: Beige adipocytes derived from WT and ATF7 KO inguinal WAT preadipocytes with rosiglitazone treatment, in duplicate; white adipocytes derived from WT and ATF7 KO inguinal WAT preadipocytes without rosiglitazone treatment, in duplicate; beige adipocytes derived from control and ATF7 overexpressing C3H10t1/2 with rosiglitazone treatment, in duplicate, using NextSeq500 Illumina.
The Transcription Factor ATF7 Controls Adipocyte Differentiation and Thermogenic Gene Programming.
Specimen part, Cell line, Subject
View SamplesGlycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes.
Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes.
Specimen part
View SamplesRsp5 is an essential and multi-functional E3 ubiquitin ligase in Saccharomyces cerevisiae. We previously isolated the Ala401Glu rsp5 mutant, which is hypersensitive to various stresses. To understand the function of Rsp5 in stress responses, suppressor genes whose overexpression allows rsp5A401E cells to grow at high temperature were screened. The KIN28 and POG1 genes, encoding a subunit of the transcription factor TFIIH and a putative transcriptional activator, respectively, were identified as multicopy suppressors of not only high temperature but also LiCl stresses. The overexpression of Kin28 and Pog1 in rsp5A401E cells caused an increase in the transcriptional level of some stress proteins when exposed to temperature up-shift. DNA microarray analysis under LiCl stress revealed that the transcriptional level of some proteasome components was increased in rsp5A401E cells overexpressing Kin28 or Pog1. These results suggest that the overexpression of Kin28 and Pog1 enhances the protein refolding and degradation pathways in rsp5A401E cells.
Overexpression of two transcriptional factors, Kin28 and Pog1, suppresses the stress sensitivity caused by the rsp5 mutation in Saccharomyces cerevisiae.
No sample metadata fields
View SamplesIn sexual reproduction, a proper communication and cooperation between male and female organs and tissue are essential for male and female gametes to unite. In flowering plants, female sporophytic tissues and gametophyte direct a male pollen tube towards an egg apparatus, which consists of an egg cell and two synergid cells. The cell-cell communication between the pollen tube and the egg apparatus, such as the reception of a signal from the egg apparatus at the pollen tube, makes the tip of pollen tube rapture to release the sperm cell. To isolate male factors involved in the interaction between a pollen tube and an egg apparatus, we focused on receptor-like kinases (RLKs), which are extensively diversified in the flowering plant lineage to comprise a large monophyletic gene family. Approximately 620 members were found in the Arabidopsis thaliana genome. Expression patterns of 558 RLKs were analyzed using an Affymetrix ATH1 microarray of A. thaliana. We focused on two RLKs, ANXUR1 (ANX1) and ANXUR2 (ANX2), and characterized their function. Here we report that pollen tubes of anx1/anx2 ruptured before arriving at the egg apparatus, suggesting that ANX1 and ANX2 are male factors controlling pollen tube behavior with directing rupture at proper timing. Furthermore, ANX1 and ANX2 were the most closely related paralogs to a female factor FERONIA/SIRENE controlling pollen tube behavior expressed in synergid cells. Our finding shows that the coordinated behaviors of female and male reproductive apparatuses are regulated by the sister genes, whose duplication might play a role in the evolution of fertilization system in flowering plants.
ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization.
No sample metadata fields
View SamplesPurpose: Cortical thymic epithelial cells (cTECs) contain a unique type of proteasomes, thymoproteasomes. Indirect evidence suggests that the key role of PSMB11, a catalytic subunit of thymoproteasomes specific to cTECs, is to generate a unique repertoire of MHC I peptides. Notably, PSMB11-deficient mice display defective development of CD8 thymocytes. The objective of this study was to characterize the impact of PSMB11 on cTECs and thymocyte development. Since different types of proteasomes have non-redundant effects on gene expression, we hypothesized that thymoproteasomes should have a distinct impact on the transcriptome and thereby the function of cTECs. Results: We report that PSMB11 in cortical thymic epithelial cells has dramatic effects on cTECs on both CD4 and CD8 thymocyte populations. PSMB11 modulates the expression of 850 genes in cTECs, 582 in CD4 thymocytes and 284 in CD8 thymocytes. PSMB11-regulated cTEC genes are involved mainly in cell-cell adhesion, extracellular matric organization and thymocyte chemotaxis. PSMB11-deficient cTECs acquire features of mTECs and perturb thymocyte development. Deletion of PSMB11 causes a major cell stress in both CD4 and CD8 thymocyte populations. Of note, PSMB11-deficiency had no impact on medullary thymic epithelial cells (mTECs), which originate from progenitors that express PSMB11 early in ontogeny. Conclusion: We conclude that PSMB11 has pervasive effects on both CD4 and CD8 thymocytes via regulation of gene expression in cTECs. Overall design: We performed RNA-sequencing in triplicate on cTECs, mTECs, and SM, M1 and M2 thymocytes from the CD4 and CD8 lineages, in order to identify differential gene expression between WT and Psmb11-deficient mice.
PSMB11 Orchestrates the Development of CD4 and CD8 Thymocytes via Regulation of Gene Expression in Cortical Thymic Epithelial Cells.
Specimen part, Cell line, Subject
View SamplesMotor-related areas of neocortex are highly differentiated into several subareas from both functional and cytoarchitectural aspects in the higher primates. To assess the molecular basis of such areal specialization, we investigated the gene expression profiles of primary motor area (M1), premotor area (dorsal and ventral) (PMd and PMv) and prefrontal area (A46) in the rhesus monkey by DNA microarray method. We found that 476 genes were differentially expressed among those areas. More than half of those genes were most abundantly expressed in M1, and most genes were complementarily expressed between M1 and A46. The expression profiles of PMd and PMv were similar to each other compared to those of M1 and A46. The data will give us a fundamental basis for further analysis of structure-function relationship of the primate brain.
Differentially expressed genes among motor and prefrontal areas of macaque neocortex.
Sex
View SamplesTH-MYCN transgenic (Tg) mice are the model for neuroblastoma. One of the sympathetic ganglia is the origin of neuroblastoma in those mice. The tumor incidences of homozygotes and hemizygotes are 100% and 70-80%, respectively.
Inactivation of SMC2 shows a synergistic lethal response in MYCN-amplified neuroblastoma cells.
Specimen part
View SamplesTo examine irreversible changes in the developing brain following seizures, juvenile inbred mice were intraperitoneally injected with kainate and nicotine.
Increased expression of the lysosomal protease cathepsin S in hippocampal microglia following kainate-induced seizures.
No sample metadata fields
View Samplesaffy_seed_kinetic_wheat - affy_seed_kinetic_wheat - Study gene expression during the grain developmental -The aim of the study is to identify the genes that are differentially expressed during the grain development in wheat.-Study gene expression during the grain developmental Sample at 100 degree days, year 2004 and 2006 Sample at 200 degree days, year 2004 and 2006 Sample at 250 degree days, year 2004 and 2006 Sample at 300 degree days, year 2004 and 2006 Sample at 400 degree days, year 2004 and 2006
RNA-seq in grain unveils fate of neo- and paleopolyploidization events in bread wheat (Triticum aestivum L.).
No sample metadata fields
View Samples