Comparatative gene expression analysis for CD4 T cell subsets isolated from peripheral blood and palatine tonsils
A methodology for global validation of microarray experiments.
Specimen part
View SamplesDNA microarrays are popular tools for measuring gene expression of biological samples. This ever increasing popularity is ensuring that a large number of microarray studies are conducted, many of which with data publicly available for mining by other investigators. Under most circumstances, validation of differential expression of genes is performed on a gene to gene basis. Thus, it is not possible to generalize validation results to the remaining majority of non-validated genes or to evaluate the overall quality of these studies. <br></br> We have devised an approach for the global validation of DNA microarray experiments that will allow researchers to evaluate the general quality of their experiment and to extrapolate validation results of a subset of genes to the remaining non-validated genes. We applied this method to a microarray experiment validated with quantitative real time polymerase chain reaction. The experiment consists of three biological replicate treatments of mouse 3T3-L1 preadipocytes with the steroid hormone dexamethasone for 3 hours. Total RNA was extracted from each of our three treatment and three control samples, and we labeled and hybridized five aliquots of each sample to Affymetrix MGU74Av2 microarrays, for a total of 30 microarrays.<br></br> We illustrate why the popular strategy of selecting only the most differentially expressed genes for validation generally fails as a global validation strategy and propose random-stratified sampling as a better gene selection method. We also illustrate shortcomings of often-used validation indices such as overlap of significant effects and the correlation coefficient and recommend the concordance correlation coefficient (CCC) as an alternative.
A methodology for global validation of microarray experiments.
Cell line, Subject, Compound
View SamplesWe report that knockdown of EJC core proteins, eIF4A3, Y14, Magoh, causes a transcript-wide changes in alternative splicing, as well as some transcriptional changes. These changes are specific to EJC core proteins, and KD of UPF1 protein caused different sets of alterantive splicing changes. These changes are linked to the rate of transcription. Overall design: Examination of 4 different knockdown, as well as GFP knockdown in HeLa cells, 2 replicates each condition.
Transcriptome-wide modulation of splicing by the exon junction complex.
No sample metadata fields
View SamplesFITFATTWIN study identified from the FinnTwin16 Cohort, which is a population based, longitudinal study of Finnish twins born between October 1974 and December 1979. The participants had no chronic disease affecting the ability to exercise, no acute disease, and no drug or alcohol abuse.
iGEMS: an integrated model for identification of alternative exon usage events.
Age, Specimen part
View SamplesWe report the application of low cell number sequencing of identifiable Drosophila melanogaster neurons following behavior. We demonstate the feasibility of identifying the transcriptome of 5 Mushroom Body output Neurons and 2 classes of Kenyon Cells. We find these neurons display a diverse repertoire of receptors and signaling transcripts. This information alone seems to be enough to identify each class of neurons in the study. In additional we show that aversive long-term memory induces changes in gene transcript levels in a subset of these neurons. This study provides a framework for identifying neuronal classes in Drosophila melanogaster and gaining insight into the interplay between behavior and gene regulation. Overall design: 5 Mushroom Body output neurons and 2 classes of kenyon cells are used to look at general gene expression and changes following aversive long term memory. Paired control and trained animals were used and a minimum of 4 pairs up to 6 pairs. Animals were of the same background (w1118). Animals were aged and parental matched. Cells were harvested at the same chronological time for the animals across all experiments. All animals were exposed to 1 minute of each odor and 1 minute of a series of 12 5second 60V shocks. This was considered one block and then the animals had spaced training of each block so there was a 10 minute break between 8 blocks of training. Trained animals had an odor paired with a shock, control animals received the shock then the odor stimulus. All cells were harvested usign a patch pipet from living animals on an electrophysiology rig within a half hour of the end of training. Cells were amplified using the Clontech SMARTer Ultra Low Input RNA version 2 High Volume kit. 2 Brain samples were also collected and 3-4 whole fly samples for each genotype were collected to account for background differences across flies.
Cell-Type-Specific Transcriptome Analysis in the Drosophila Mushroom Body Reveals Memory-Related Changes in Gene Expression.
Subject
View SamplesBcl11a is a transcription factor known to regulate lymphoid and erythroid development. Recent bioinformatic analysis of global gene expression patterns has suggested a role for Bcl11a in the development of dendritic cell (DC) lineages. We tested this hypothesis by analyzing the development of DC and other lineages in Bcl11a(-/-) mice. We show that Bcl11a is required for expression of IL-7 receptor (IL-7R) and Flt3 in early hematopoietic progenitor cells. The loss of IL-7R(+) common lymphoid progenitors accounts for previously described lymphoid defects in Bcl11a(-/-) mice. In addition, we found severely decreased numbers of plasmacytoid dendritic cells (pDCs) in Bcl11a(-/-) fetal livers and in the bone marrow of Bcl11a(-/-) fetal liver chimeras. Moreover, Bcl11a(-/-) cells show severely impaired in vitro development of Flt3L-derived pDCs and classical DCs (cDCs). In contrast, we found normal in vitro development of DCs from Bcl11a(-/-) fetal liver cells treated with GM-CSF. These results suggest that the persistent cDC development observed in Bcl11a(-/-) fetal liver chimeras reflects derivation from a Bcl11a- and Flt3-independent pathway in vivo.
Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo.
Specimen part
View SamplesWhole blood RNA-Seq was applied to investigate gene expression kinetics in Tanzanian males who underwent controlled malaria infection by intradermal injection with aseptic, purified, cryopreserved Plasmodium falciparum sporozoites. Overall design: 10 volunteers injected intradermally with a total of 25'000 infectious Plasmodium falciparum sporozoites (PfSPZ).
Whole blood transcriptome changes following controlled human malaria infection in malaria pre-exposed volunteers correlate with parasite prepatent period.
Subject
View SamplesAcute myeloid leukemia (AML) is a complex, heterogeneous disease with variable outcomes following curative intent chemotherapy. AML with inv(3) is a genetic subgroup characterized by low response rate to induction type chemotherapy and hence is among the worst long term survivorship of the AMLs. Here, we present RNA-Seq transcriptome data from OCI-AML-20, a new AML cell line with inv(3) and deletion of chromosome 7. Overall design: RNA-Seq transcriptome analysis of OCI-AML-20 cell line with three biological replicates.
Characterization of inv(3) cell line OCI-AML-20 with stroma-dependent CD34 expression.
Disease, Cell line, Subject
View SamplesThe present study reveals LMYC and MXD1 as novel regulators of a transcriptional program that is modulated during the maturation of Batf3-dependent dendritic cells (also known as type I classical dendritic cells or cDC1s).
The MYCL and MXD1 transcription factors regulate the fitness of murine dendritic cells.
Specimen part
View SamplesChronic obstructive pulmonary disease (COPD) is an independent risk factor for lung cancer, but the underlying molecular mechanisms are unknown. We hypothesized that lung stromal cells activate pathological gene expression programs supporting oncogenesis. To identify molecular mechanisms operating in the lung stroma that support development of lung cancer. Study subjects included patients with- or without- lung cancer across a spectrum of lung function. We conducted multi-omics analysis of non-malignant lung tissue to quantify the transcriptome, translatome and proteome. Cancer-associated gene expression changes predominantly manifested as alterations in the efficiency of mRNA translation modulating protein levels in the absence of corresponding changes in mRNA levels. The molecular mechanisms driving these cancer-associated translation programs differed based on lung function. In subjects with normal to mildly impaired lung-function, the mammalian target of rapamycin (mTOR) pathway served as an upstream driver; whereas in severe airflow obstruction, pathways downstream of pathological extracellular matrix (ECM) emerged. Consistent with a role during cancer initiation, both the mTOR and ECM gene expression programs paralleled activation of previously identified pro-cancer secretomes. Furthermore, in situ examination of lung tissue documented that stromal fibroblasts express cancer-associated proteins from the two pro-cancer secretomes including IL6 in mild or no airflow obstruction and BMP1 in severe airflow obstruction. Two distinct stromal gene expression programs promoting cancer initiation are activated in lung cancer patients depending on lung function. Our work has implications both for screening strategies and personalized approaches to cancer treatment. Overall design: Polysome-profiling of non-cancerous lung stroma tissue samples from patients with or without lung cancer across a range of forced expiratory volume in one second (FEV1)
Distinct Cancer-Promoting Stromal Gene Expression Depending on Lung Function.
Specimen part, Subject
View Samples